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1. Introduction

The injection of fast neutral particles into a magnetically-con�ned fusion plasma

depositing energy by collision processes is an important method for plasma heat-

ing and current drive. Sources for negative or positive hydrogen ions delivering

an ion beam that is accelerated to a speci�ed energy and neutralized by a gas

target are basic components of neutral beam injection (NBI) systems. The torus

of the fusion experiment ITER will have large dimensions and neutral beams

with a particle energy of 1 MeV are required. While the neutralization e¢ ciency

for positive hydrogen-ion beams at 1 MeV tends to zero, it is still 60 % in case

of negative hydrogen ions. However, negative hydrogen ions are vulnerable to

destruction processes and the current densities extracted from the corresponding

ion sources are typically a factor of ten lower than from positive-ion sources. High

negative-ion currents can be only achieved by using a large-scale extraction area

corresponding to source dimensions of 1.9 x 0.9 m2. The spatial homogeneity

of the extracted negative-ion current density over the large-scale extraction

area and a pulse duration of one hour are essential requirements for the ITER

negative-ion source.

RF-driven sources for positive hydrogen ions have been successfully developed

at IPP (Max-Planck-Institut für Plasmaphysik, Garching) for the neutral beam

heating systems of the fusion experiments ASDEX Upgrade and W7-AS/W7-X.

In contrast to arc-sources, the use of RF-driven sources allows a basically

maintenance-free operation, which reduces the need for complex remote handling

at ITER. A RF-driven negative-ion source on this basis is currently under

development at the IPP, and was adopted as the reference source for the ITER

neutral beam injectors.

ITER-relevant operation conditions of the ion source can be achieved by using

the surface production of negative ions as opposed to the volume production

often used for accelerator sources in nuclear physics. Positive or neutral hydrogen

plasma particles from a plasma source are converted into negative ions by picking

up electrons from a surface with a low work function. Predominantly, negative

ions produced on the plasma grid surface close to the ion extraction system



6 Chapter 1. Introduction

contribute to the extracted negative-ion current density. This is an e¤ect of the

short survival length (a few cm) of the negative hydrogen ion.

The work function of a bare metal surface is not su¢ ciently low to produce

enough negative ions and lowering the work function by covering the plasma grid

with cesium is necessary. An evaporation system, containing the alkaline metal

in its elemental state, is used to inject cesium into the ion source. The cesium

from this supply has to be transported to the plasma grid surfaces where an

enhancement of the surface production rate is obtained.

At present, the most critical issue is obtaining homogeneous cesium conditions

over the plasma grid surface that are stable for plasma pulses with a duration

of one hour. The optimization of the cesium homogeneity and control are major

objectives to achieve the requirements, imposed by ITER. Investigations of the

cesium injection, transport, and adsorption on the plasma grid surface during

the vacuum (plasma-o¤) and discharge phases (plasma-on) of the ion source are

required to obtain an advanced understanding of the dynamics of cesium within

the source.

Besides for ITER, cesium is used all over the world in negative-ion sources

for neutral beam injection systems and particle accelerators. Experience and

empirical techniques are often important factors to obtain a high source perfor-

mance. Hence, systematic investigations of the dynamics of cesium are of great

technologic importance for negative-ion sources in general.

Numerical simulations are valuable tools to predict the dynamics and spatial

distribution of cesium within the negative-ion source. Data of the de- and

adsorption kinetics of cesium layers on metal samples are necessary to carry out

simulations of the cesium transport within the ion source. The available data in

research publications are, however, not valid for the vacuum and temperature

conditions within negative-ion sources. Calculations for the thermal desorption

rates from the vapor pressure of elemental cesium show that these parameters are

inadequate to give results that are consistent with experimental observations at

the IPP negative-ion source test facilities. This disparity indicates that the basic

input parameters are strongly correlated to the speci�c surface and pressure

conditions within the negative-ion source.

Dedicated experimental studies are required to obtain input data for the trans-

port computation, such as the surface a¢ nity of cesium on the walls of the

ion source or the �ow from the evaporation oven into the source. Thus, it is

important to perform systematic investigations of the surface a¢ nity and the

desorption of cesium from metal surfaces in a laboratory experiment, where ion
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source relevant temperature and pressure conditions can be obtained. Addition-

ally, the lab experiments help to improve the understanding of factors that are

highly relevant to the negative-ion production, for example, the work function.

The work function of a cesium-coated metal surface is a dominant parameter for

the negative-ion production.

Plasma exposition is a requirement for the surface production of negative-ions.

Therefore, the in�uence of the plasma exposition on the work function of a

cesium-coated metal sample and the comparison to measurements in the vacuum

are important issues to resolve. Due to the presence of a plasma, it is impossible

to determine the photocurrent from a biased metal sample, since the plasma-

generated currents seriously interferes with the photocurrent measurement.

A possible way to overcome this issue by the use of pulsed plasma source is

investigated.

Cesium injection at the ion source test facilities requires a stable and constant

cesium �ow for a time period of several weeks for up to ten hours per day. No

monitoring of the intensity and long-term stability of the �ow from the IPP

cesium evaporation oven, based on cesium evaporation from a liquid reservoir,

has been done up to now. However, these data are highly desirable to evaluate

the performance of the existing oven and to quantify the cesium consumption of

the ion source. Furthermore, the monitoring serves to determine the in�ux from

the cesium oven into the ion source that is required for the cesium transport

simulation.

Thus, an important task is the development and testing of a robust cesium

detector design in order to monitor the performance and reliability of the

existing evaporation oven and to �nd ways to optimize the existing and new

cesium injection systems. The surface ionization detection principle for atomic

cesium beams in a vacuum environment is a possible approach that satis�es the

requirements for a long-term �ow monitoring.

The liquid reservoir-based cesium injection systems, in use at IPP, are limited

regarding the long-term stability and the control of the delivered cesium �ow.

Thus, cesium injection by commercial dispenser sources, based on cesium release

by the decomposition of stable cesium compounds, needs to be evaluated and

prepared for the use at the negative-ion source. These dispensers can be either

implemented directly into the ion source or used as cesium sources for a new

oven.

The results of the described measurements are prerequisites for realistic nu-

merical transport investigations. However, no commercial or scienti�c code
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is available meeting the demands of the cesium transport within negative-ion

sources. Hence, it is required to start the development of a code that considers

the speci�c requirements of the negative-ion source.

The major objectives of the computer simulation are the computation of the

dynamics and the spatial resolution of the cesium �ux onto the plasma grid of

negative-ion sources during vacuum and discharge phases. An investigation of

the in�uence of the source wall temperatures and the length of the plasma pulse

are important aspects that need to be simulated by the model. The investigation

of these e¤ects is primarily motivated from operational experience gained at the

IPP test facilities.

The enhancement of the understanding of the cesium transport during the

long-pulse operation phases of the negative-ion source is an especially important

objective, since it will require a stable one hour pulse.

Besides the direct injection from the cesium source, a release of cesium from the

walls of the ion source during both the vacuum and the plasma phase has to be

considered in the code. Hence, important aspects of the transport simulation

are to identify the physical processes and to determine the associated surface

areas of the ion source walls that contribute predominantly to these transport

processes. The identi�cation of the cesium-emitting areas is required to provide

an optimization of the cesium management and to explain properties of the

cesium �ux, such as the �ux homogeneity or the fraction of cesium ions within

the total �ux.

Based on the contributions from the cesium oven and from the cesium release by

the source walls, it is possible to simulate the dynamics and pro�le of the cesium

�ux onto the plasma grid. This is necessary to evaluate both the loss of cesium

through the apertures of the grid and the homogeneity of the �ux pro�le.

An important application for a simulation of the cesium transport is, further-

more, to �nd new ways in order to optimize the stability and homogeneity of

the cesium �ux within the source. This includes the evaluation of the e¤ect of

cesium injection by the use of several evaporation sources, as planned for future

ion sources at IPP.

Additionally, calculations are required in order to devise a new method of cesium

injection by an array of cesium dispensers that may improve the control and

homogeneity of the cesium �ux onto the plasma grid. These design calculations

can be used to optimize the arrangement of the prototype of the dispenser array

in front of the plasma grid and to check the feasibility of this method.

The in�uence of the spatial distribution of the cesium conditions on the plasma
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grid on the pro�le of the extracted negative-ion current density over the plasma

grid is an important aspect. It is not possible to treat both e¤ects separately.

The transport process of the surface-generated negative ions into the extraction

apertures might possibly reduce the in�uence of the distribution of the ion

production rate, created by the cesium �ux, on the current density pro�le. A

detailed study of this process requires, therefore, a coupling of a cesium transport

code with a simulation of the transport of surface-generated negative-ions within

the plasma of the ion source.

Within the scope of this thesis, the Monte Carlo based numerical
transport simulation CsFlow3D was developed, which is the �rst
computer model that is capable of simulating the �ux and the ac-
cumulation of cesium on the surfaces of negative-ion sources. Basic
studies that support the code development were performed at a ded-
icated experiment at the University of Augsburg. Input parameters
of the ad- and desorption of cesium at ion source relevant conditions
were taken from systematic measurements with a quartz microbal-
ance, while the injection rate of the cesium supply was determined
by surface ionization detection. This experimental setup was used for
further investigations of the work function of cesium-coated samples
during plasma exposure. Additionally, the surface ionization detector
was used to monitor the stability of the cesium �ow from di¤erent
cesium sources.
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2. Neutral Beam Heating of Fusion
Plasmas

2.1. Nuclear Fusion

The energy demands of the 21th century with its continuous population growth

cannot be met by relying on the conventional means of energy production based

on fossil fuels or nuclear �ssion in the long term. The resources required for these

technologies can hardly be expected to last more than hundred years, and their

continued use has already caused serious environmental damage through global

warming and the accumulation of large amounts of radioactive waste. A possible

approach to solve these problems is nuclear fusion, which means converting lighter

nuclei into heavier ones. The fusion of hydrogen isotopes into stable helium o¤ers

a very high energy release per nucleon, which is of the order of a few MeV. This

is six orders of magnitude higher than the typical energy release obtained from a

chemical reaction, a well known fact that can explain the potential e¢ ciency of

nuclear fusion as an energy source.

2.1.1. Fusion Reactions

Thermonuclear fusion reactions are the basic mechanisms of the energy produc-

tion in stars. The following proton-proton chain, converting hydrogen to helium,

is the predominant mechanism:

p + p! D + e+ + �e + 0.42 MeV, (2.1a)

e+ + e� ! 2 + 1.02 MeV, (2.1b)

D + p! 3He +  + 5.49 MeV, (2.1c)
3He + 3He! 4He + 2p+ 12.86 MeV. (2.1d)



2.1. Nuclear Fusion 11

10 100 1000 100001031

1030

1029

1028

1027

1026

1025

E [keV]

D+T

D+D
T+T

σ
[m

2 ]

E [keV]

D+T

0 20 40 60 80 100

Coulomb

Figure 2.1.: Left side: cross-sections for the fusion between di¤erent hydrogen isotopes. Right
side: comparison of the DT-fusion cross-section with the cross-section of elastic Coulomb scat-

tering between the ions.

The �rst step involves the fusion of two hydrogen nuclei into deuterium, releasing

a positron as one proton is converted into a neutron and a neutrino. This process

is governed by the weak interaction, which transforms a proton into a neutron

emitting a positron (�+-decay). The weak interaction, however, results in very

small reaction probabilities and the rates of fusion reactions at the densities and

temperatures in stellar cores are very low. This is compensated by the huge

volume of stars. As fusion reactors on earth have to be kept considerably smaller

in size than a star, the use of described reaction chain 2.1a is not feasible for

energy production on earth. More e¢ cient reaction paths have to be applied in

order to obtain fusion reactions at feasible reaction rates. Such nuclear reactions

are determined by the strong nuclear force acting at a close distance of several

fm (10�15 m), which is in the order of the radius of the nucleus. The electrostatic

interaction between the two nuclei creates a repulsive Coulomb potential and

particle energies of the order of 550 keV are required to overcome this so called

Coulomb-barrier. As a consequence of the tunneling-e¤ect, which was explained

in 1928 by Gamov [Gam28], fusion reactions can take place at energies far below

the Coulomb barrier. An overview of fusion cross-sections for reactions between

the hydrogen isotopes is shown in �gure 2.1. The maximum of the D-T fusion

cross-section is obtained at a lower energy in comparison to the D-D and T-T
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reactions:

D + T! 4He + n + 17.6 MeV. (2.2)

Thus, a D-T mixture o¤ers a more e¢ cient route to power production than

with pure deuterium and future fusion reactors will rely mainly on this reaction

[Wes04]. While deuterium is available in su¢ cient amounts in seawater (0:015%),

the radioactive isotope tritium (half-life: 12.3 years) is found in nature only in

small amounts, where it is created by cosmic radiation in the upper atmosphere.

Thus, tritium-breeding is done inside a reactor by having energetic neutrons hit

a lithium blanket:

n + 6Li! 4He + T + 4.8 MeV. (2.3)

The supply of lithium is more limited than that of deuterium, but still large

enough to supply the world�s energy demands for more than 1000 years. A way

to commence D-T-fusion reactions is to initiate collisions of accelerated reactants

with a relative energy of 100 keV. Nevertheless, this approach has a negative

energy balance. Figure 2.1 shows a comparison of the fusion cross-section with

the cross-section of elastic Coulomb scattering. Obviously, Coulomb-collisions

are the predominant process and only an insigni�cant number of fusion reaction

processes takes place during cross-beam scattering. This is not enough to get

a positive energy balance and the number of inter-particle collisions has to be

increased signi�cantly to obtain a feasible energy output.

2.1.2. Magnetic Con�nement

The number of D-T-collisions can be increased by creating a deuterium-tritium

plasma with an ion temperature of T = 20 keV. Strong magnetic �elds are re-

quired to con�ne the plasma, as contact with material walls of the vacuum cham-

ber would cool down the plasma to an unacceptable level.

Early design approaches based on a cylindrical plasma shape su¤ered from high

energy losses at the ends of the device. To avoid these losses, it is essential to

use a toroidal topology of the magnetic �eld lines. In simple toroidal systems,

the magnetic �eld topology generates a r ~B-drift that goes in opposite directions
for ions and electrons. The resulting electric �eld and the toroidal magnetic �eld

cause an ~E � ~B - drift of the whole plasma, creating an unstable condition. An

additional poloidal �eld is necessary to twist the magnetic �eld lines and thus

to improve the magnetic con�nement. This additional �eld can be generated by

two di¤erent concepts: Stellarators and Tokamaks. Both concepts are outlined
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Figure 2.2.: Left: Schematic view of the coil design and plasma shape in a Stellarator experi-
ment. Right: Schematic view of the coils and toroidal shape of the plasma within a Tokamak.

in �gure 2.2. In the Stellarator design the helical �eld is generated entirely by

using external �eld coils. The name of the second concept, Tokamak, is derived

from the Russian language for toroidal chamber with magnetic con�nement. In a

Tokamak, a toroidal �eld is created by external coils arranged symmetrically to

their axes, while a toroidal plasma current is used to generate a poloidal magnetic

�eld component.

The plasma current in a Tokamak can be driven by induction with the plasma

itself acting as the secondary winding of a transformer. As described in section

2.2.1, this so called Ohmic heating is not su¢ cient and additional, non-inductive

current drive methods are required. One example is the tangential injection of

high-energy neutral beams into the fusion plasma that is described in section 2.2.3.

Sustaining the toroidal plasma current in Tokamaks is an energy-consuming and

complex process which limits the operation time of present-day Tokamaks. This

limitation can be avoided by the principle design of the Stellarator, however, at

the expense of a more complex geometry.

Nevertheless, today, the Tokamak is the most advanced concept for magnetic

con�nement and was chosen for the ITER1 fusion experiment, which will be the

�rst step towards devising a commercial fusion reactor. The objective of the

ITER machine is to demonstrate the feasibility of fusion by means of magnetic

con�nement to produce energy. A continuous supply of external heating power

has to be provided in current fusion experiments in order to compensate for in-

evitable power losses to the walls of the vessel. The power multiplication factor

1ITER: from Latin the way, Tokamak, France
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Q of a fusion experiment is de�ned by the ratio of the generated power by the

fusion reaction and the external heating power: Q = PFusion=PExternal Heating. The

external heating power will no longer be necessary in a fusion reactor when the

�-particle energy of 3.5 MeV from the fusion reaction can be used to replenish the

power losses (�-particle heating). A scenario of a self-sustaining plasma that is

primarily heated by alpha-particle from fusion reactions generating a signi�cant

amount of neutrons, has not been achieved up to now and is the main objective

of ITER [SCM+07].

2.1.3. Ignition Criterion

The condition that the heating of the plasma by the energy of the D-T fusion

reaction is su¢ cient to maintain the temperature of the plasma against all losses

without external power input is called ignition. It can be expressed in mathe-

matical terms by the so called triple product:

n �E T > 3 � 1021 sec m�3 keV. (2.4)

Inequality (2.4) is also known as Lawson criterion [Law67] and is determined by

the plasma density n, energy con�nement time �E and the temperature T of the

fusion plasma.

Signi�cant progress has been made in the last few decades and the value of the

triple product has been increased by several orders of magnitude. Modern fusion

experiments reach plasma densities of n = 1020m�3 and plasma temperatures be-

tween 10 and 20 keV. An energy con�nement time of �E = 1 sec with an energy

multiplication factor of Q = 0.6 was reached by the presently largest Tokamak

JET2 [Wes00]. To reach ignition, an enhancement of the energy con�nement time

to �E = 2 - 3 sec will be necessary, which can be achieved by increasing the plasma

size. Thus, the major radius of the ITER Tokamak vessel will be 6.2 m. This is

about twice as large as the radius of JET (R = 3 m). A fusion power of 500 MW

and a power ampli�cation of Q = 10 is expected for ITER.

External heating methods will play an essential role for the success of the ITER

experiment. Plasma temperatures of about 20 keV attainable to ignite a mag-

netically con�ned fusion plasma are not accessible during the start-up phase and

have to be provided by external heating. Furthermore, external current drive

capabilities are required to maintain and to control the plasma current, which is

important for the plasma stability of the ITER Tokamak.

2JET: Joint European Torus, England
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Di¤erent heating and current drive methods have been successfully developed and

applied to fusion experiments:

2.2. Plasma Heating Methods

2.2.1. Ohmic Heating (OH)

The toroidal plasma current driven in Tokamaks by the transformer e¤ect gen-

erates Ohmic heating via Joule dissipation. Obviously, this method is applicable

only for Tokamaks, since it would strongly modify the magnetic �eld structure

of a Stellarator. Furthermore, Ohmic heating by itself is not su¢ cient to drive

the plasma to reactor-relevant temperatures. The electrical conductivity of the

fusion plasma increases with the plasma temperature resulting in a decrease of

deposited heating power by Joule dissipation. Hence, a steady-state situation

is reached at insu¢ cient plasma temperatures of about T = 1 - 2 keV, so that

additional heating methods are necessary in order to raise the plasma tempera-

ture to the point where the probability for the fusion reaction reaches a su¢ cient

magnitude and the required energy balance is maintained.

2.2.2. Radiofrequency Heating

A common heating method is radiofrequency (RF) heating, which uses high power

electromagnetic waves to transfer energy into the plasma. The magnetically con-

�ned ions and electrons of the fusion plasma move along the magnetic �eld lines

with a characteristic gyration radius and frequency. A resonant heating process

takes place if the frequency of the injected electromagnetic wave matches the

frequency of gyration. This makes it possible to heat di¤erent constituents of the

plasma depending on the chosen frequency and the corresponding plasma density

and composition. Three frequency ranges are typically used for radiofrequency

heating. Ion cyclotron resonance heating (ICRH) uses frequencies between 30 -

100 MHz to match the gyration frequency of the ions. The corresponding reso-

nance frequency for electrons is in the range between 50 and 150 GHz. It is used

for the electron cyclotron resonance heating (ECRH) method in order to deposit

several MW of heating power into the plasma. Lower hybrid heating operates in

the frequency range between 1 and 10 GHz, utilizing the excitation of collective

plasma oscillations to interact with both ions and electrons.
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2.2.3. Neutral Beam Injection (NBI)

An important way to deposit heating power is the injection of an energetic neutral

particle beam into the fusion plasma. Neutral atoms that are not a¤ected by the

strong magnetic con�nement �eld are able to penetrate into the plasma torus,

where collisions of the neutral particles with the plasma electrons and ions cause

an ionization of the neutral beam. The fast ions created in this process are

con�ned, as well, by the magnetic �eld and transfer their kinetic energy to plasma

ions and electrons via consecutive collisions if their energy is signi�cantly higher

than the energy of the plasma particles. In order to avoid a perturbation of the

fusion process by the depletion of educts, low Z elements similar to the fusion

species (H, D or T), are preferred as injected neutral particles. There are mainly

three collision processes, where a conversion of fast hydrogen neutrals H0fast
3 into

fast hydrogen ions H+fast takes place:

1. Collisional ionization by electrons:

H0fast + e
� ! H+fast + 2e

� (2.5)

2. Collisional ionization by plasma ions:

H0fast +H
+ ! H+fast +H

+ + e� (2.6)

3. Charge exchange collisions with plasma ions:

H0fast +H
+ ! H+fast +H

0 (2.7)

A neutral beam of intensity I0 and velocity vb in an ideal, uniform hydrogen

plasma of density n is attenuated exponentially along its direction x [Swe73]:

I(x) = I0 exp
�
�x
�

�
; (2.8)

where � is the mean free path length for ionizing collisions, which is given by:

� =
1

n��
: (2.9)

3In the following description of the physical processes, the symbol H is replaceable by D or T.
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The total trapping cross-section �� is calculated by forming the sum over the

rate coe¢ cients Xi of the three reactions (2.5), (2.6) and (2.7), divided by the

beam velocity vb:

�� =
X
i

Xi=vb: (2.10)

In a pure hydrogen plasma, typical values for �� are 1.5x10�15 cm2 at

10 keV/amu, decreasing to 3x10�16 cm2 at 80 keV/amu [Spe89]. Applying

formula (2.8) to a typical ASDEX Upgrade4 fusion plasma with a plasma density

of 5x1019 m�3, a penetration depth of 0.5 m is obtained by a 93 keV deuterium

neutral beam [SCF+99]. This is su¢ cient for the ASDEX Upgrade vessel with

a minor radius of 0.5 m [SLL+03]. For most of the NBI systems, a tangential

injection geometry is preferred to reduce the formation of banana orbits, which

are not desirable for a fusion plasma [Wes04]. The tangential injection geometry

also increases the beam plasma interaction length of the fusion plasma, which is

advantageous for an e¤ective current drive. This so-called non-inductive current

drive is desirable for Tokamak steady-state operations and to reach advanced

regimes of superior con�nement, which often depend on the current density

pro�le.

As previously mentioned, the ITER vessel will be much larger then in present

fusion experiments. The minor radius of ITER will be 2 m which is four times

larger than that of ASDEX Upgrade. As a consequence, the neutral beam

injection system for ITER will require a by far higher beam energy. The neutral

beam energy of 1 MeV D is, in particular, required for ITER in order to provide

a su¢ ciently high current drive e¢ ciency. A more detailed overview of the

requirements for the ITER neutral beam injection systems is given in section

2.3.3.

4ASDEX Upgrade: Axial SymmetricDiverter EXperiment, Tokamak fusion experiment, Ger-
many.
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2.3. Neutral Beam Injection Systems

2.3.1. Basic Components of NBI Systems

Figure 2.3.: Schematic view of the individual components of a neutral beam injection system

for heating a magnetically-con�ned fusion plasma.

The schematics of a neutral beam injection system is shown in �gure 2.3. Three

successive steps are required for the neutral beam injection process:

1. generation of an ion beam,

2. neutralization of the ion beam,

3. transport of the neutral beam into the plasma vessel.

Ion-Beam Generation The generation of an ion beam is generally accomplished

by extracting hydrogen ions electrostatically from a uniform hydrogen plasma

source. The ions are then accelerated to energies of several tens of keV by an

electrostatic lens system. A characteristic property of ion beams for neutral beam

injection is the very high beam current (tens of amperes) needed to achieve the

required power (several MW) and the consequently large beam cross-section (hun-

dreds of cm2). Because of its large size, the beam has to be subdivided into many
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beamlets using electrodes with multiple apertures in order to avoid aberration

e¤ects on the ion optics at the edge of a large aperture. This subdivision is

not required in regular ion sources for particle colliders and medical applications,

where signi�cantly lower beam cross-sections (several cm2) from single-aperture

systems are su¢ cient.

Neutralization A gas target is used to neutralize the accelerated ions by charge-

exchange collisions with cold hydrogen molecules. The overall neutralization e¢ -

ciency for positive and negative ions is limited and depends on the energy of the

ion beam, as shown in �gure 2.4. A high gas load is generated by the neutral-

izer within the NBI system. High-speed vacuum pumps are required to remove

the remaining hydrogen gas behind the neutralizer in order to create the proper

vacuum conditions to connect the NBI system to the plasma vessel.

Transport Depending on the neutralization e¢ ciency, fast residual ions within

the neutral beam may represent a signi�cantly large fraction of the total beam

power. These fast ions can create high power loads on the components of the

fusion experiment. A bending magnet system is used to de�ect and thermalize

the ions on a suitable surface (ion dump). The remaining high energy neutral

particles are then injected into the fusion device. A calorimeter can be placed

into the beam for measuring the beam power and for conditioning the ion sources

independently of the fusion experiment.

An important component of the neutral beam injection system is the ion source,

which determines the essential beam properties such as beam homogeneity and

the extracted beam current. The development of high-performance ion sources is

therefore one of the most important objectives of research for NBI systems.
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Figure 2.4.: Optimum neutralization e¢ ciency for a neutral beam injection system that is

based on the acceleration of positive and negative deuterium ions, in dependence of the beam

energy per deuteron.

2.3.2. Comparison of Positive and Negative-Ion Sources

Neutral particle beams can be created by the acceleration and neutralization of

positive or negative hydrogen ions. Both, negative and positive-ion based neutral

beam systems are applied in today�s fusion experiments depending on the speci�c

application of the system.

Positive-Ion based Systems

Positive-ion based neutral beam injection systems are reliable and represent well

advanced heating devices in ongoing experiments, such as ASDEX Upgrade

[SFH+02][SLL+03]. Unfortunately, positive-ion based systems have a serious

physical limitation, which will restrict their application when a high particle

energy is required. The neutralization e¢ ciency for positive ions decreases dras-

tically if the ion energy exceeds 100 keV/deuteron. Figure 2.4 shows the neutral-

ization e¢ ciency for positive and negative deuterium ions [BPS75]. The neutral-

ization of positive-ion beams with particle energy higher than 100 keV/deuteron

will be fractional, and a great amount of the extracted beam current density will

be lost for the neutral beam. Additionally, positive-ion sources also produce a

certain amount of molecular ions (D+2 ,D
+
3 ) that are also accelerated. These ions
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are then converted into neutral atoms with only half and third of the required

energy in the neutralizer.

Negative-Ion based Systems

Negative-ion based Neutral Beam Injection (N-NBI) is not limited by the beam
energy. Even for beam energies in the range of several hundred keV/deuteron

the neutralization fraction does not drop below 60 % and the remaining 40 % of

the beam are more or less equally partitioned between D+2 and D
+. Nevertheless,

the total e¢ ciency of a N-NBI system is limited to � 25 %, which is described

in more detail in the following section.

The physical aspects of the generation and extraction of negative ions, which

are explained in more detail in section 3.1.1 and 3.1.2, are totally di¤erent from

those of positive ions.

The hydrogen plasma of an ion source contains a large amount of positive ions

that can easily be extracted by applying a negative extraction voltage with an

electrostatic lens system. Negative ions, however, form only a small part of

the total hydrogen plasma and have special production channels. While the

additional electron of the negative ion has a very low binding energy of 0.75 eV,

which is the reason for the high neutralization e¢ ciency, it leads to a great

vulnerability to destruction processes during the transport. An overview of the

destruction processes is given in section 3.1.2. Thus, a distinction between the

extracted current density jex of negative ions, measured directly after the ions

left the source, and the accelerated current density jacc, which is measured after

the ions passed the acceleration distance, is necessary. Furthermore, negative-ion

sources have the problem that electrons are co-extracted together with the

negative ions. High energy electron beams can create serious damage to the

accelerator components. Hence, the co-extracted electrons have to be removed

at low particle energies and thermalized on an appropriate electron dump.

Positive-ion sources deliver extracted current densities of 2500 (2000) A/m2

H+(D+) ions [SCF+99][CBC07], while extracted current densities of up

to 330(230) A/m2 H�(D�) ions are available from negative-ion sources

[T+98][SFF+06]. Very large extraction areas are therefore used in case of

negative-ion sources in order to obtain a high total ion current. Negative-ion

based systems are routinely being operated at the fusion experiments LHD5

5LHD: Large Helical Device, Stellarator, Japan
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Table 2.1.: Parameters that have to be ful�lled by the negative-ion sources for the heating
and diagnostic neutral beam system for ITER.

Parameter Heating Beam Diagnostic Beam

Acc. Current Density > 200 A/m2 D� > 300 A/m2 H�

Electron-to-Ion Ratio < 1 < 0.5

Accelerated Current > 40 A > 60 A

Beam Energy 1 MeV 100 keV

Pulse Length up to 3600 sec 3 sec every 20 sec

Beam Homogeneity �10%
Source Pressure < 0.3 Pa < 0.3 Pa

and JT-60U6 in Japan with beam energies in the range of 100 to 400 keV

and extracted current densities of 270 and 110(80) A/m2 H�(D�), respectively

[Oha98][T+00][O+00][K+00].

2.3.3. ITER Requirements

As described in section 2.2.3, the neutral beam heating system for ITER will re-

quire a neutral beam energy of at least 800 keV/amu. This challenging objective

cannot be achieved by a neutral beam system based on the production and neu-

tralization of positive ions and requires the development of neutral beam systems

based on negative-ion technology.

A neutral beam energy of 1 MeV/amu D was chosen in order to satisfy the central

heating and, especially, the current drive requirement for ITER [IAE02]. Thus, a

neutral beam power of 33.2 MW, delivered by two tangential arranged injectors,

is required [HTA08]. The beam power has to be maintained for a pulse dura-

tion of 3600 sec. An extracted negative-ion current of 40 A D� per beam line

is required in order to generate an initial power of 40 MW according to a �nal

heating power of 16.6 MW per beam line. The remaining power is lost due to

neutralization losses (40%) and by transmission losses in the beam transport.

A negative-ion source with dimensions of 1.9 � 0.9 m2 and an extraction area of

0.2 m2 delivering a current density of 200 A/m2 D� is necessary to provide this

current. The large-scale extraction area must have a plasma homogeneity better

than �10% for the local current density over the area to prevent damage to the

6JT-60U: Japan Torus, Tokamak, Japan
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system by unfocused parts of the ion beam.

Another di¤erence to positive-ion sources are the electrons extracted together

with the negative hydrogen ions. In order to avoid damage on the grid struc-

ture of the accelerator by high-energy electrons, it is necessary to remove these

co-extracted electrons at a low energy immediately after their extraction. This

process causes a heat load on an electron sink, which is subject to the technical

limitations of the cooling. Thus, it is necessary to maintain an electron-to-ion

current density ratio je/jD� < 1. Furthermore, the operational pressure of the

ion source has to be limited to 0.3 Pa in order to reduce destructive losses by

collisions with residual gas particles in the extraction and acceleration systems.

Besides the heating neutral beam, an additional diagnostic neutral beam system

based on negative ions is planned for ITER. Table 2.1 gives an overview of the

ITER requirements regarding the N-NBI for both systems [IAE02].

2.3.4. Types of Plasma Sources

Two di¤erent concepts are in use by current neutral beam injectors: arc-sources

and RF-sources. Both types are in use for the ASDEX Upgrade neutral beam

injection system by positive ions [SCF+99].

Arc-Sources The arc-source is based on applying a dc-voltage of about 100 V

between heated cathode �laments and the source walls. The electrons emitted by

the �laments are accelerated into the source, where ionization of gas molecules

creates a plasma. Heated tungsten �laments are used as cathodes with typical to-

tal arc-currents in the order of 1000 A, producing �lament temperatures between

1700 - 2700 �C. Arc-sources are reliable and have been used since the development

of the �rst NBI systems. Nevertheless, these sources have severe disadvantages.

The tungsten evaporates continuously into the source during operation, which

limits the life time of the �lament and it thus requires frequent replacement.

Tungsten deposition also contaminates the inner walls of the source changing its

surface characteristics, which is especially relevant for negative-ion production as

described in section 3.1.1.

RF-Sources The other type of source is the RF-source. The power is inductively

coupled into the plasma from an RF-antenna. For the sources developed at IPP

typical frequencies and powers of 1 MHz and 100 kW are employed, respectively.
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Figure 2.5.: Technical drawing of the planned ITER neutral beam heating injection system,

showing ion source, accelerator, and neutralizer with the residual ion dump.

RF-sources have demonstrated their reliability at ASDEX Upgrade, where four

2.5 MW RF-sources for positive ions are in use. This is the only injector in the

world that currently uses RF sources. There are many advantages of RF-sources.

The absence of �laments in the discharge (with a limited life time) and the sim-

plicity of the source (only three electrical connections, instead of 50 in today�s

arc-sources with 24 �laments) makes remote handling easier. Compared to arc-

sources, RF-sources have basically maintenance-free operation, as demonstrated

by the ASDEX Upgrade ion sources.

These design features are quite bene�cial for ITER with its remote handling re-

quirements. A RF-driven source for negative ions has been developed at the

Max-Planck-Institut für Plasmaphysik [SFF+06], which ful�lls certain aspects of

the ITER requirements. Details of the negative-ion test facilities at IPP are given

in section 3.2.2. As a result of this successful development, the ITER board has

decided to adopt the IPP RF-driven ion source as the reference source for the

ITER neutral beam injectors [HTA08].
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Figure 2.6.: Schematic drawing of the MAMuG (Multi Aperture Multiple Gap) accelerator

design, consisting of 5 grids (apart from plasma and extraction grid) forming 5 accelerator

stages of 200 keV each.

2.3.5. The ITER N-NBI System

The full-size ITER test facility will combine ion source, accelerator and neutral-

izer [H+09]. The ITER heating neutral beam, as shown in �gure 2.5, will be built

by Consortio RFX (Padova, Italy) in the next few years, in close collaboration

with other European associations. This is accompanied by the operation of two

future neutral beam test facilities: SPIDER7 and MITICA8. While SPIDER will

be an ion source test facility for 100 keV negative-ion beams, MITICA will be a

1:1 prototype of an ITER injector with a full 1 MeV beam line. The design of

the RF-driven ion source has been adopted from IPP Garching and the Japanese

MAMuG9 design [TIK+06] is used for the acceleration system. This accelerator

consists of �ve grids (apart from plasma and extraction grid), forming �ve accel-

eration stages of 200 keV each, as illustrated by �gure 2.6. The distances between

the individual grids are typically between 50 mm and 90 mm.

7SPIDER: Source for the Production of Ion of Deuterium Extracted from RF Plasma, Test
Facility, Italy

8MITICA: Megavolt ITER Injector & Concept Advancement, Test Facility, Italy
9MAMuG: Multiple Aperture Multiple Gap Design, Japan
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3. Negative Hydrogen Ion Sources
for ITER N-NBI

3.1. Negative Ion Generation and Destruction

The physical processes of formation, destruction and transport of negative hydro-

gen ions are described in general in the following section. Particle temperatures

and densities measured at the IPP negative-ion source test facilities are used to

demonstrate the relevance of speci�c physical processes.

3.1.1. Formation of Negative Hydrogen Ions

Optimizing the negative-ion production and simultaneously minimizing the

electron-to-ion ratio, is essential to generate a powerful neutral beam. While

positive hydrogen ions can be extracted directly from the plasma boundary, the

physics of production, transport and extraction of negative ions is much more

complex [Pam95]. There are two fundamental negative-ion formation processes:

volume production [BND77] and surface production [BDD74]. Both formation

processes are widely applied in small negative-ion sources (diameter of several cm)

with a mono-aperture extraction system depending on the speci�c requirements.

For example, the front ends of the SNS1 [LDD+91] and LANSCE2 [RGS+08] spal-

lation neutron sources employ the surface production mechanism, while volume

H� sources are in use at DESY3 [Pet09] and CERN4 [HKM+06].

1SNS: Spallation Neutron Source, Oak Ridge
2LANSCE: Los Alamos Neutron Science Center, Los Alamos
3DESY: Deutsches Elektronen-Synchrotron, Hamburg
4CERN: Conseil Europeen pour la Recherche Nucleaire, Genf
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Figure 3.1.: Schematic drawing of a tandem source using a two-step process for the volume

production of negative hydrogen ions.

Volume Production

Negative-ion sources employing the volume production process use the dissocia-

tive attachment of slow electrons (Te � 1 eV) to hydrogen molecules in high

vibrational states [Bac06] to generate negative ions:

H2(� 00) + eslow ! H� +H; (3.1)

where the vibrational excitation � 00 � 5 for hydrogen and � 00 � 8 for deuterium

molecules ensures a high collision cross-section [AW78]. The most common type

of volume sources are tandem ones. Figure 3.1 shows the working principle of

a tandem source that is divided into two regions by a magnetic �lter �eld. Hot

electrons (Te = 5 eV) generated in the driver region produce highly vibrationally

excited D2/H2 molecules drifting into the second chamber, where the electron

density and temperature are reduced by the magnetic �lter �eld. This reduction in

electron temperature (Te = 1 eV) in the second region maximizes the dissociative

attachment rate and minimizes the destruction of negative ions by collisions with

fast electrons.
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Figure 3.2.: Schematic �gure of the surface conversion process shifting and broadening the
hydrogen a¢ nity level until electron transfer from the surface to the atom is possible.

Surface Production

The second negative-ion generation mechanism is the surface process. This

process relies on converting neutral hydrogen atoms and positive hydrogen ions

from a plasma source into negative ions at a metallic converter surface with a

low work function. The surface production process is based on the transfer of

electrons from the surface electrode to hydrogen atoms or ions approaching the

wall:

H+ e(surface) ! H� (3.2a)

H+ + e(surface) ! H+ e(surface)! H� (3.2b)

Positive hydrogen ions approaching the surface are neutralized by resonant

electron-transfer to an excited state with subsequent Auger de-excitation into

the ground state. In the case of a preceding dissociation process, these reactions

can also occur for molecules or molecular ions.

In the vicinity of the metal, the electron a¢ nity level of the hydrogen atom is

shifted and broadened as illustrated in �gure 3.2. An electron tunneling process

from the surface to the atom is possible, if the electron a¢ nity level lies energet-

ically below the Fermi level of the surface. This results in the production of a

negative ion [IKS92][RWL82][AGK+85].

Hydrogen adsorbed at the surface with an a¢ nity level that is situated between
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Figure 3.3.: Surface conversion yields for negative ions on a cesiated molybdenum surface

from hydrogen atoms (red) and ions (blue).

the Fermi level and the vacuum level, has a negative e¤ect on the negative-ion for-

mation process. An electron that tunnels from the a¢ nity level of the impinging

hydrogen atom or ion to the a¢ nity level of the adsorbed atom is subsequently

captured into one of the many unpopulated electronic metal states above the

Fermi level and cannot tunnel back to the a¢ nity level of the hydrogen. This

results in a reduction of the backscattering ion fraction, which is proportional to

the density of adsorbed atoms [vAGR+86].

Experimental investigations show that increasing the temperature of the converter

surface to 150 �C is bene�cial to the negative-ion production process [SFF+06].

This e¤ect is not fully understood up to now, but might be related to the removal

of chemically adsorbed hydrogen from the converter surface, as described in more

detail in section 4.1.4,.

The surface process depends strongly on the work function of the converter elec-

trode. An increase of the negative-ion current by a factor of 500 by lowering the

work function of a molybdenum converter surface by 2.9 eV with respect to the

work function of the bare metal using a cesium coating has been reported by Lee

and Seidl [LS92]. A strong increase of the performance of a negative-ion source by

adding small amounts of cesium during operation has also been observed [OHI89].

Thus, a clean and homogeneous cesium layer is highly desirable on the converter

surface for a high negative-ion production. Figure 3.3 shows the optimum surface
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conversion yields for hydrogen atoms [LS92] and ions [IKS92] on a cesium-coated

molybdenum sample for a work function that is lower than 1.6 eV. At the IPP RF-

driven ion source, a neutral hydrogen temperature of TH = 0.8 eV and hydrogen

ion energies EH+ of several eV are obtained. Furthermore, the atomic hydrogen

density nH is two orders of magnitude higher than the positive ion density nH+

at comparable particle temperatures [FFF+06]. As a consequence, negative ions

are predominantly produced by the neutral hydrogen �ux.

Recent calculations by a plasma sheath simulation [WGF09] show that a potential

well is generated in front of the plasma grid by the space charge of the surface-

generated negative ions, limiting the negative-ion �ux from the surface into the

source. Positive ions can compensate this space charge and thus enhance the H�

out�ux from the surface.

Production Mechanism for ITER

The production mechanism for negative hydrogen ions for the ITER neutral beam

injection system is determined by the requirements that are listed in section 2.3.3.

An important requirement is the upper limit for the pressure. The amount of

stripping losses, i.e. the neutralization of H� in the accelerator system by colli-

sions with the hydrogen background gas (speci�c reactions are described in section

3.1.2) depends on the source pressure. Thus the negative-ion source for ITER will

have to operate at a hydrogen pressure of 0.3 Pa. A higher source pressure would

cause intolerable stripping losses and the recently extracted negative-ion beam

leaving the ion source would be neutralized prior to its acceleration to the desired

energy. Even at the ITER-relevant source pressure of 0.3 Pa, a high amount of

20 - 30% of the total beam current [KH06] will be lost by this channel.

Additionally, ITER requires a low ratio of co-extracted electron and the extracted

ion current density (electron-to-ion ratio) je=jH� < 1. Electron beams with a

high energy cause critical heat loads on the water-cooled electron dump (ex-

traction grid) of the ion source, but also on beam line components of the NBI

system. The IPP test facilities (see section 3.2.2) are protected by limiting the

co-extracted electron power on the extraction grid by an interlock system in order

to avoid permanent damage done by the melting of the extraction grid. Large-

size negative-ion sources are technically limited by the cooling e¢ ciency of the

electron heat load. This is not a major problem in a small negative-ion source

using the volume process.

Both requirements cannot be met by the volume production. In order to extract
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Figure 3.4.: Negative-ion current density a) and electron-to-ion current ratio b), extracted
from a negative-ion source test facility for (pure) volume production without cesium (black

squares) and surface production (with cesium, red circles) in dependence of the RF-power at

di¤erent hydrogen pressures.

ITER-relevant negative-ion current densities from the dissociative attachment re-

action (3.1), a high density of (excited) H2 molecules and a high density of slow

electrons are required in the extraction region. Hence, a high hydrogen gas den-

sity is necessary and high electron currents have to be tolerated.

Figure 3.4 shows results of measurements of negative-ion currents and electron-

to-ion ratios for volume (early experiments without cesium [SFF+06]) and surface

production measured at an IPP negative-ion source test facility. A negative hy-

drogen ion current density below 50 A/m2 with an electron-to-ion high than 60 is

reached at ITER-relevant source pressure conditions between 0.3 - 0.4 Pa for pure

volume operation without cesium. The higher current density of 100 A/m2 H�

and an electron-to-ion ratio below 10 was only obtained after rising the hydrogen

density by an increase of the source pressure to 1.4 Pa.

Thus, it was not possible to match the ITER requirements during volume oper-

ation. However, the enhanced source performance by the surface process due to

the injection of cesium permits the extraction of ITER-relevant current densities

at a source pressure of 0.3 - 0.4 Pa. The surface production does not require high

densities of slow electrons. A signi�cant reduction of the co-extracted electron

current is, therefore, possible. Measurements (�g. 3.4) at the IPP test facilities

show that extracted current densities of up to 350 A/m2 H� with an electron-to-

ion ratio below 1 can be obtained from a well-conditioned source using surface

production. A variation of the source performance is observed depending on the

cesium conditions within the ion source.
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Figure 3.5.: Conversion of neutral and ionic hydrogen plasma particles (grey) into negative
ions (blue) on a cesiated converter surface.

3.1.2. Negative Ion Transport and Destruction

Negative hydrogen ions can be neutralized easily after their generation by col-

lisions with plasma and gas particles. The fragility of negative ions is a result

of the low binding energy of 0.75 eV of the additional electron. While this is

bene�cial for the neutralization e¢ ciency, as described in section 2.3.2, it causes

undesired losses of negative ions during transport both within the ion source and

in the beam.

In contrast to positive-ion sources, where the ion current can be extracted directly

from the plasma interface, negative-ion sources require a transport process of the

negative ions from their production surface to the extraction apertures.

Negative ions generated on the cesium covered converter surface are accelerated

back into the plasma volume by the plasma sheath potential. A certain fraction

of the negative ions is bent back by charge exchange collisions with plasma parti-

cles and by the Lorentz force due to magnetic �elds present within the extraction

region of the ion source. These ions can reach the circular extraction apertures

of the plasma grid. Electric �elds, formed by an extraction voltage of several kV

are used to focus them into an ion beam. Figure 3.5 illustrates the transport and

extraction process of surface-generated negative hydrogen ions for a single aper-

ture. The probabilistic negative-ion transport code TrajAn5 [GWF09] is used to

visualize the described transport process. Figure 3.6 shows trajectories of surface-

generated negative ions computed with TrajAn for a multi-aperture extraction

system. A mean free path length of a few cm is obtained in the extraction region

at the parameters of the RF-driven ion source. Because of this short survival

5TrajAn: Trajectory Analysis Code, R. Gutser
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Figure 3.6.: Trajectories of surface generated negative hydrogen ions that reach the plasma
boundary; computed with the TrajAn transport code. The negative ions are bend into the

extraction apertures under the in�uence of magnetic �elds and collisions with background par-

ticles.

length, only negative ions produced on the surface of the plasma grid contributed

to the extracted current density. The computed survival probability of a negative

ion during the transport into one of the extraction apertures is between 20 %

and 30 %. The individual rate coe¢ cients for the destruction of negative ions by

collision processes are given in �gure 3.7.

Electron Stripping

The collision of a negative ion with an electron can strip the additional electron

o¤ [JL87]:

H� + e� ! H+ 2 e�. (3.3)

This process strongly depends on the energy of the colliding electron. Electron

stripping is the dominating destruction process at high electron temperatures

of Te = 20 eV. Cooling down the electrons to Te < 2 eV in the negative-ion

source results in a reduction of the rate coe¢ cient by two orders of magnitude.

Therefore, a magnetic �lter �lter is used to reduce the electron temperature in

the extraction region.
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Figure 3.7.: Rate coe¢ cients for negative-ion destruction reactions for di¤erent ion energies
and electron temperatures for typical conditions within the extraction region of the RF-driven

ion source.

Mutual Neutralization

Mutual neutralization takes place when negative ions collide with positive Cs+

[JR78] and H+x [EdSO
+95] ions of the source plasma (x = 1...3):

H� +H+x ! H+Hx; (3.4)

H� + Cs+ ! H+ Cs. (3.5)

The weakly bound electron of the negative ion is transferred to the positive

species, and both ions are neutralized. Mutual neutralization is the dominat-

ing destruction process at a low electron temperature of Te < 2 eV, which is

reached close to the production surface.
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Associative and Collisional Detachment

Detachment reactions [JL87][Bar90] take place when negative ions collide with

molecular or dissociated hydrogen:

H� +H! e� +H2; (3.6)

H� +H ! e� + 2H, (3.7)

H� +H2 ! e� +H+H2:

While the reaction rate coe¢ cient is two orders of magnitude lower than for

mutual neutralization or electron stripping, the neutral gas density of 1019 m�3 is

two orders of magnitude higher than both, the ion and electron densities (range of

1017 m�3) in the negative ion production region [FFF+06]. Thus, despite its low

rate-coe¢ cient, the detachment reaction is not negligible. Collisional detachment

with the background gas is a signi�cant loss process during the transport and

formation of neutral beams.

3.2. RF-driven Ion Source for ITER N-NBI

The objective of the negative-ion source development is the optimization of the

ion production via the surface e¤ect, while minimizing destruction processes and

the co-extracted electron current, in order to extract high negative-ion current

densities for long pulses at ITER-relevant operation conditions.

3.2.1. Design of the IPP RF-driven Ion Source

The IPP RF-driven ion source is divided into three parts: driver, expansion re-

gion, and extraction region. A schematic overview of the RF-driven ion source is

given in �gure 3.8, while �gure 3.9 shows the corresponding CAD drawing. The

production and extraction of negative ions can be divided into four steps: posi-

tive and atomic hydrogen particles are generated in a RF-driven plasma source

(driver). The plasma expands into the source body (expansion region), where a

magnetic �lter removes the hot electrons (Te > 2 eV) that can e¤ectively destroy

negative ions. The positive and neutral hydrogen particles hit a converter sur-

face, which is called plasma grid (see yellow grid in �gure 3.9) with a low work
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Figure 3.8.: Schematic drawing of the components of the IPP RF-driven ion source and the
e¤ect of the suppression magnets on the co-extracted electrons.

function and the conversion into negative ions takes place by picking up surface

electrons. A positive extraction voltage in the kV-range is applied in order to

extract negative ions and to forms the ion beam. Detailed descriptions of the

individual parts and physical processes are given in the following subsections:

Driver

The source plasma is generated by inductive coupling of 1 MHz RF-power to

hydrogen gas inside the driver. A water-cooled coil that is wrapped around a

ceramic Alumina (Al2O3) cylinder is connected to a RF generator capable of

delivering up to 100 kW of power. A water-cooled and tungsten-coated Faraday

screen is used inside the cylinder to protect it against thermal loads and erosion

by plasma sputtering. A temporary gas pu¤ together with an electron emitting

ThO2-coated tungsten starter �lament at the backside of the driver ensures a

reliable plasma start-up. Depending on the technical limitations of the speci�c

test facility, plasma-pulse durations between 5 sec and 3600 sec can be obtained.

A background pressure of 10�3 - 10�4 Pa is established in the vacuum phases

between the plasma pulses, where a hydrogen pressure of 0.3 Pa is used.

Electron densities of ne � 1018 m�3 and electron temperatures of Te > 10 eV
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Figure 3.9.: Technical drawing of the individual components of the RF-driven ion source.
The cesium evaporation oven (yellow) and the three grids (PG, EG and GG) of the extraction

system were emphasized.
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are obtained in and close to the driver [MDCK+09][TBM04]. In order to avoid

signi�cant negative-ion destruction by electron stripping, the plasma parameters

in the expansion region have to be changed signi�cantly.

Expansion Region

The expansion region contains several magnet boxes at the peripheral regions

of the chamber at a distance of 2 cm (see red bars in �gure 3.9) to the plasma

grid. A magnetic �eld of a strength of 7 - 8 mT (strength at the center of the

ion source) is thereby generated in order to reduce the electron temperature and

density. Typical electron temperatures of Te < 2 eV and electron densities of ne
= 5x1017 m�3 are obtained [FFF+06].

Furthermore, the expansion chamber is connected to the cesium oven, evapo-

rating the alkaline metal from a liquid reservoir into the ion source in order to

generate a thin cesium layer on the plasma grid. This layer is necessary to obtain

reasonable negative-ion surface production by lowering the work function of the

converter surface. Cesium (see yellow ampoules in �gure 3.9) is continuously

injected at a constant rate of 10 mg/h from the nozzles (see yellow pipe in �gure

3.9) of the oven at the backplate of the expansion chamber. The walls of the

expansion chamber are coated with a copper layer in order to increase their

thermal conductivity. A water cooling system is used to keep the walls at 50 �C,

which is bene�cial for the distribution of the evaporated cesium inside the ion

source, as described in section 6.1.3.

Extraction Region

At the required hydrogen pressure of 0.3 Pa, negative-ion production takes place

predominantly by surface conversion. The surface process takes place on all

cesium-covered surfaces of the negative-ion source that are su¢ ciently exposed to

the atomic hydrogen �ux. As described in section 3.1.2, negative hydrogen ions

have a limited survival length of a few cm until a neutralization collision takes

place. As a consequence, the surface area of the plasma grid that is in close prox-

imity to the extraction apertures provides the dominant contribution of extracted

negative ions to the ion beam. Thus, the cesium conditions of the plasma grid

surface are extremely important for the extracted negative-ion current. The use

of a plasma grid temperature of 150 �C was found to be bene�cial for the source
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performance [SFF+06], which will be explained in more detail in section 4.1.4.

A certain fraction of the surface generated negative ions is transported through

the source plasma into the multi-aperture system of the plasma grid (see yellow

PG apertures in �gure 3.9), where they are focused into an ion beam by electric

�elds, formed by an extraction voltage of several kV. The penetration depth of

this �eld is limited because of the �eld compensation by the space charge of the

plasma particles.

Applying a bias voltage between the plasma grid and the source body is an ef-

�cient way to reduce the number of co-extracted electrons, limiting the source

performance as described in section 3.1.1. The electrically isolated plasma grid is

biased positively with respect to the source body. A diode is used to suppress any

current back to the power supply. The e¤ect of the bias voltage can be enhanced

signi�cantly by inserting a bias plate at a distance of 1 cm with respect to the

plasma grid that is connected to the source body [SFF+06][FFK+08].

Extraction System

A triode extraction system with three grids is used for ion-beam formation and

in order to �lter out the co-extracted electrons at manageable particle energies.

These grids are called the following: the plasma grid (PG), the extraction grid

(EG) and the grounded grid (GG). In the �rst step, an extraction voltage of

Uex = 5 - 10 kV is applied between the plasma and the extraction grid in order

to remove co-extracted electrons at reasonable energies. A second voltage of

Uacc = 10 - 20 kV is used at the test facilities of the IPP in order to focus the

�ltered negative-ion beam onto a calorimeter, which allows a measurement of the

accelerated current density.

Electron removal is done by a magnetic �eld. This electron de�ection �eld is

generated by Sm2Co17 magnet rods inside the extraction grid. The �eld strength

is high enough to de�ect the electrons onto the surface of the extraction grid,

while D�/H� ions can still pass through the �lter nearly una¤ected because of

their higher mass. Figure 3.10 shows a numerical simulation of a beam of D� ions

and electrons for an extraction system with 14 mm aperture diameter computed

with the KOBRA3 code [SW89]. The impact of co-extracted electrons on the

extraction grid causes a heat load that must be compensated by an optimized

water-cooling system. The maximum heat load that can be tolerated by the

extraction grid without damage is a limiting factor for the performance of the ion

source.
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Figure 3.10.: Simulation of the extraction and beam formation of a negative deuterium ion

beam (blue) together with the co-extracted electron beam (black) hitting the extraction grid

for an extracted ion current density of 250 A/m2. The suppression magnets and the associated

magnetic �eld was rotated by 90o to show the electron de�ection.

3.2.2. Negative-Ion Source Test Facilities at IPP

The RF-driven negative-ion source development towards ITER at IPP is done on

three dedicated test facilities: BATMAN6, MANITU7 and RADI8. The future test

facility ELISE9 �nished the design phase and will be operational in 2011. While

the test facilities BATMAN and MANITU have moderately sized ion sources (59

x 32 cm2), the test facility RADI has a source with approximately half the size

(80 x 80 cm2) of the future ITER source (190 x 90 cm2), as shown in �gure 3.11.

Speci�cations and achieved operation parameters of the three existing test facili-

ties and the ITER requirements are given in table 3.1. More detailed information

on the test facilities are given in the following sections.

6BATMAN: Bavarian Test Machine for Negative Ions, IPP Garching.
7MANITU: Multi Ampere Negative Ion Test Unit, IPP Garching.
8RADI: RADial Injector, IPP Garching
9ELISE: Extraction from a Large Ion Source Experiment, IPP Garching.
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Table 3.1.: Operation parameters of the existing test facilities BATMAN, MANITU and RADI
in comparision with the ITER requirements

BATMAN MANITU RADI ITER

Acc. Current Density [A/m2] 230 (D�) 120 (D�) 200 (D�)

330 (H�) 150 (H�) 300 (H�)

Source Pressure [Pa] 0.3 0.3 - 0.4 0.3 0.3

Electron/Ion Ratio < 1.0 (D�) < 1.5 (D�) < 1.0

< 0.5 (H�) < 0.5 (H�)

Pulse Length [sec] 4 3600 (H�) < 10 3600

Dimensions [cm2] 59 x 32 59 x 32 80 x 80 190 x 90

Extraction Area [cm2] 60 - 70 200 0 2000

Extraction Voltage [kV] 9 - 11 9 9 - 10

Beam Homogeneity [%] 10

Figure 3.11.: Photograph of the ion source in MANITU (left hand side) with a single driver and
the test facility RADI (right hand side) with four RF-driven ion sources which has approximately

half the size of the ITER source.
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BATMAN

The �rst test facility BATMAN [SCF+99] showed the feasibility and reliability of

negative-ion surface production at the required parameters on a small area (59

x 30 cm2). Accelerated current densities of 330 A/m2 with H� and 230 A/m2

with D� [SFF+06] have been achieved with the IPP RF-driven prototype source

on BATMAN at the required source pressure of 0.3 Pa and a su¢ ciently low

electron-to-ion ratio (< 1 D�, 0.5 H�), but with a small extraction area of 60 -

70 cm2 and limited pulse length of several seconds. The test facility BATMAN is

being used currently to investigate the physical aspects of negative-ion production

and extraction.

MANITU

The long-pulse test facility MANITU [KFF+08] has demonstrated its capability

to provide 3600 (600) sec H� (D�) extraction on a mid-size extraction area of

200 cm2 using the same source as it is used in BATMAN with current densities

of 150(120) A/m2 H�(D�). This stable one-hour pulse operation showed that

the RF-driven ion source concept is able to meet the ITER requirement on pulse

duration. Similar value than in BATMAN were obtained for shorter pulse lengths

of several seconds.

RADI

The half-size RF test facility RADI [FFH+07] is an intermediate step between the

present small sources (BATMAN and MANITU) and the full-size ITER source.

The RADI test facility has no ion extraction system and the plasma grid is

replaced by a slotted dummy grid with a conductance comparable to the ITER

grid. The objective of RADI is to demonstrate the required plasma homogeneity

of a large RF-driven ion source. RADI has approximately the width and half

the height of the ITER source. This allows an easy extrapolation to the full-

size ITER source. A su¢ ciently homogeneous illumination of the total grid area

can not be accomplished by a single driver; therefore, four drivers for inductive

plasma generation are used in RADI, as it is shown in �gure 3.11.
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Figure 3.12.: Comparison of the existing IPP prototype source in MANITU and the ion source
for the future ELISE test facility with the negative-ion source, planned for the ITER N-NBI.

ELISE

The future IPP N-NBI test facility ELISE [HFF+09] will be equipped with an ion

extraction system. This will allow the investigation of physical aspects of the ion

production and extraction in a half-size ITER negative-ion source. Experience,

acquired by the development and operation of the IPP test facilities is incorpo-

rated in the design of the future ELISE ion source test facility. ELISE will be

an important step between the small IPP prototype source and the large ITER

source in order to obtain early operational experience of the extraction from a

large RF-source [F+08]. This scaling from the 1/8 ITER-size test facility MAN-

ITU (1 driver) to the half-size ITER source for ELISE (4 driver) and then to the

full-size ITER source is illustrated by �gure 3.12. ELISE will o¤er large experi-

mental �exibility and wide operational margins for optimization and exploration

of new concepts. The ELISE test facility will be equipped with a high voltage

supply for a total voltage of 60 kV and an extraction area of 1000 cm2. One of

the main objectives of ELISE is to demonstrate the homogeneous ion production

and extraction from a large RF-driven, cesium seeded negative-ion source.
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3.2.3. Source Operation with Hydrogen and Deuterium

The IPP negative-ion source test facilities can be operated with hydrogen and

deuterium. Both modes are required for the ITER heating and diagnostic neutral

beams. However, the use of hydrogen is preferred during source conditioning and

for experimental studies. Source operation with deuterium is possible only for a

limited number of pulses.

The interaction of implanted deuterium in the calorimeter with the deuterium ion

beam results in the associated production of neutrons by the D-D fusion reaction:

D + D! 3He + n + 2.45 MeV. (3.8)

Long-pulse deuterium operation requires, therefore, a neutron shield around both

the calorimeter and the ion source, as in MANITU or a remote control system, as

done in BATMAN. Despite of the radioactive exposure, the physics of deuterium

discharges di¤ers from that of hydrogen. The co-extracted electron current is

higher for deuterium operation, which results in an excessively high power load

on the extraction grid. This limits the allowable RF power and thus the maximum

D� current density. With an increased �lter �eld, produced by additional magnet

rods near the diagnostic �ange, the electron-to-ion ratio can be reduced. However,

a ratio below 0.4 that is easily accessed with hydrogen pulses has not yet been

achieved with deuterium [SFF+06].

3.2.4. Long Pulse Operation

The negative-ion source test facility MANITU is capable of running long pulses.

This requires the replacement of the Ti getter pumps, used in BATMAN, by

cryosorption pumps and the installation of cw10 power supplies for the RF and

high voltage system.

The reduction and stabilization of the electron current, while maintaining a suf-

�ciently high negative-ion current, are the most critical issues for long pulses up

to now. An excessively high co-extracted electron current can damage the ex-

traction system, as described in section 3.2.1, limiting the e¤ective pulse time.

The operational experience showed that the long-pulse stability is strongly corre-

lated to the cesium conditions on the plasma grid. These are determined by the

thickness of the cesium layers and by the temperatures of the source components

during the plasma and the preceding vacuum phase. Up to now it is not clear,

10cw: continuous wave.
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Figure 3.13.: MANITU long-pulse performance in hydrogen with and without (w/o) Mo

coating of the source for di¤erent pulse lengths.

which parameter determines the long pulse stability.

A recent improvement in MANITU has demonstrated the importance of the chem-

ical properties of the cesium layer for long pulse operation. The sputtering of

copper was observed in MANITU deteriorating the cesium on the plasma grid

surface. The coating of critical surfaces in MANITU with molybdenum resulted

in a considerable increase of the source performance, as shown in �gure 3.13

[KBF+09].

These promising results show the importance of the development of procedures

and methods in order to obtain an advanced control of the cesium conditions.
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4. Experimental and Theoretical
Aspects for Cesium

4.1. Physical and Chemical Properties of Cesium

Cesium-coated metal surfaces are characterized by a very low work function.

Thus, the addition of cesium into ion sources, optimized for the surface produc-

tion of negative ions, makes it possible to increase drastically the conversion yield

of negative ions from plasma particles. This procedure is widely used in small

negative-ion sources (diameter of several cm) with mono-aperture extraction sys-

tems [LDD+91][RGS+08].

The negative-ion source for ITER will have large dimensions (190 x 90 cm2) and

will have to operate for pulse lengths of one hour. This will require an advanced

control of the distribution and dynamics of cesium within the source in order to

maintain stable cesium conditions in space and time. The properties of cesium

layers and cesium vapor are important information in order to achieve these ob-

jectives.

Alkaline metals, such as cesium, are of great technological importance, for exam-

ple, they are needed to produce photosensitive surfaces in photo-cathodes. The

available data on cesium is related to this �eld of research. A convenient way

to quantify the cesium coverage of a surface is to use the unit monolayer (1 ml).

One monolayer of cesium corresponds to 4.5x1014 cesium atoms per cm2 on the

metal substrates that are relevant for negative-ion sources.

As mentioned in section 3.1, cesium is injected into negative-ion sources in or-

der to obtain a low work function. While this property is used in negative-ion

sources to enhance the surface production, it explains its technologic importance

in general.
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Figure 4.1.: a) Work function behavior of a metal substrate in dependence of the cesium
coverage. b) Corresponding work function parameters for di¤erent polycrystalline substrates.

4.1.1. Work Function of Cesium Layers

The work function of a metal substrate �sub is found to drop with increasing alka-

line metal coverage to a minimum value of �min, corresponding to a coverage �min.

Increasing the coverage above �min results in a rise and subsequent saturation of

the work function to a value of �equ at a coverage of � > �equ, when the work

function of the bulk adsorbate is reached. This physical process is illustrated in

�gure 4.1. The minimum work function, previously mentioned, appears at a frac-

tional coverage between �min = 0.5 - 0.7 monolayers, depending on the substrate

material and crystal orientation. The value of the minimum work function in case

of a cesium layer is in the range of �min = 1.4 - 1.6 eV, which is subject to the

substrate material. Figure 4.1 gives an overview of the work function parame-

ters �sub, �min and �equ for di¤erent substrate materials and coverages of cesium

[Wil66a][Wil66b][SS68][LS60][Eas70][HR63]. The value of the work function for

coverages above one monolayer �equ = 2.14 eV [BD69] is given by the work func-

tion of cesium in the bulk.

The appearance of a work function minimum is an e¤ect due to the formation of

a chemical compound of cesium with the metal substrate creating a dipole layer.

This strongly reduces the work function of the surface. A detailed overview of

this phenomenon including density functional calculations is given in [WFHK83].
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Figure 4.2.: Desorption �ux from a cesiated tungsten substrate in dependence of the fractional
monolayer coverage for relevant temperatures.

4.1.2. Desorption Flux from Fractional Cesium Layers

The desorption �ux �Cs of cesium from a fractional layer on a tungsten substrate

at temperature T depends strongly on the coverage �, given in monolayers of the

metal surface:

�Cs = �0 � exp

�
�e (3:37� 2:78 �)

kbT

�
; 0 5 � 5 1; (4.1)

where �0 = 7.5x1026 s�1cm�2 is a pre-exponential factor [ATG85]. This depen-

dence on the coverage is a consequence of the repulsive dipole interaction between

the cesium atoms in the layer. This decreases the binding energy of the layer for

increasing coverage. Similar dependences are found for other metal substrates.

The corresponding desorption �ux from tungsten for ion-source relevant temper-

atures is shown in �gure 4.2. Hence, a very high desorption �ux is expected if the

sample coverage approaches a full monolayer coverage. Using a sample tempera-

ture of 50 �C, corresponding to the temperature of the ion source walls, results

in a high desorption �ux of �Cs > 10 monolayers per second for a nearly com-

plete monolayer coverage. When completing a full monolayer, the strong dipole

bond on fractional covered metal surfaces is replaced by the weak van-der-Waals

interaction between cesium atoms in the bulk, which de�nes the vapor pressure

of cesium (see section 4.1.3).

Under ideal conditions of a pure cesium layer on a metal substrate, no multilayer

growth will be present at room temperature and su¢ ciently low densities of ce-
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Figure 4.3.: Vapor pressure and corresponding balancing �ux for pure cesium in the equilib-

rium state in dependence of the temperature of the liquid cesium.

sium vapor [Gra80]. The formation of multiple monolayers is, however, possible

in the presence of high cesium densities and the corresponding high �uxes onto

the surfaces. This is the case on the inner surface of a cesium source containing a

reservoir of liquid cesium, which is described in section 4.2.6. The desorption �ux

and surface coverage is in this case determined by the vapor pressure of liquid

cesium.

4.1.3. Vapor Pressure of Pure Cesium

Cesium is the heaviest stable alkaline metal with an atomic radius of 265 pm and

a low melting temperature of 28.5 �C [Lid07]. Cesium has the lowest enthalpy

of evaporation (�Hf = 67:7 kJ/mol) and the highest vapor pressure of all sta-

ble metallic elements, except for mercury (�Hf = 59:1 kJ/mol) [Lid07]. As a

consequence, cesium can be easily injected into negative-ion sources by thermal

evaporation. Figure 4.3 shows the dependence of the cesium vapor pressure p

on the temperature T of a liquid reservoir, taken from data in [TL37]. The cor-

responding balancing wall-�ux �equ for an equilibrium situation within a closed

system can be evaluated by the mean thermal velocity �v and the density n of

cesium in the gas phase by the kinetic gas theory:

�equ =
1

4
n�v =

pp
2� kbT mCs

; (4.2)
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where mCs is the atomic mass of cesium. According to the data presented in

�gure 4.3, a desorption �ux of �equ = 1014 - 1015 s�1cm�2 evolves in a system at

vapor pressure equilibrium for a wall temperature ranging between T = 20 �C

- 50 �C. The desorption balances the condensation of cesium in the gas phase

according to the vapor pressure curve.

Most of the presented data were obtained for the development of photosensitive

surfaces, where the negative in�uence of possible cesium compounds is suppressed

by using an ultra-high vacuum environment and surface temperatures of several

1000 �C, avoiding the accumulation of impurity species. Cesium compounds that

occur inevitably under the vacuum conditions (10�3 - 10�4 Pa) and at the surface

temperatures (20 - 50 - 150 �C) in negative-ion sources (see section 3.2) will have

an important impact on the physical and chemical processes within the source.

4.1.4. Chemical Compounds of Cesium

The removal of the single 6s shell electron of the cesium atom results in the very

stable Xe-like con�guration. Thus, cesium has the highest electropositivity of all

stable elements. This results in a very high chemical reactivity, forming a wide

spectrum of crystalline compounds with ionic binding characteristics. Because

of its high reactivity, cesium (like barium) is used as a getter material in order

to absorb residual-gas particles. The �ux of impurities on the inner walls of the

negative-ion source can be approximated by formula (4.2) taking into account the

mass of the residual gas particles. At an equilibrium wall temperature of 50 �C,

one monolayer of impurities, such as H2O and O2, is built up on the source walls

after 3 - 4 sec for a typical background pressure of 10�3 - 10�4 Pa. Furthermore,

cesium forms alloys with metals and is able to dissolve residual gas.

Cesium compounds have di¤erent physical properties than pure cesium. This

has a negative impact on devices that require speci�c properties of elemental

cesium, such as the surface wettability [PAL07]. It is reported in [Mit89] that

the performance of a cesium �eld ion thruster will be reduced by a throttling

of the cesium �ow that is a consequence of the formation of cesium compounds.

The non-metallic binding characteristics of cesium compounds is also unfavorable

for the surface conversion process, an e¤ect that is related to the increase of the

e¤ective work function of the layer. An overview of Cs-O-H-metal compounds

that are relevant for the negative-ion source is given in the following section.
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Table 4.1.: Overview of relevant cesium compounds that can be formed within the negative-ion
source or on diagnostic systems for cesium.

Formula Name Color Properties Tmelt[�C] Source

Cs cesium silvery alkaline metal 28.5 [Lid07]

CsH cesium hydride white cub. cry. 528 [LB08]

CsnOm cesium oxides [Bor86]

Cs2O cesium oxide orange hex. cry. 495 [Lid07]

CsO2 cesium superoxide yellow tetr. cry. 432 [Lid07]

Cs2O3 cesium trioxide brown cry 400 [Lid07]

CsOH cesium hydroxide white cry 342 [LB08]

hygroscopic

CsCuO2 cesium oxycuprate black, blue cry 1025 [LB08]

shimmer

CsAu golden alloy [LB08]

Overview and Melting Point of Cesium Compounds

As a result of the ionic binding, the various cesium compounds are crystalline

materials with a high melting temperature. Table 4.1 gives an overview of the

melting points and characteristic properties of relevant cesium compounds, such

as color and crystal structure. The compound cesium oxycuprate CsCuO2 can be

formed by reactions of cesium with the copper surfaces of the walls of the negative-

ion source, while the alloy CsAu can be formed on the quartz microbalance (see

section 4.2.2) that is used for cesium detection.

All cesium compounds have melting temperatures far above the temperature

range on the walls of the negative-ion source, however, thermal dissociation could

be still possible for a lower temperature range.
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Chemical Stability of Cesium Compounds

The stability of cesium compounds against thermal dissociation can be evaluated

employing the Gibbs potential. Figure 4.4 shows the Gibbs potential of the ce-

sium compounds CsH, Cs2O and CsOH taken from [LB08]. The stability analysis

shows that Cs2O and CsOH have a very high chemical stability and a thermal de-

composition process is impossible within the temperature range of the ion source

and the liquid reservoir. This means that the formation of the speci�ed cesium

compounds on the surfaces of the ion source and in the liquid reservoir results

in a loss of the available cesium. As a consequence, the recycling of pure cesium

from these compounds is not possible apart from plasma-related decomposition

processes.

However, the Gibbs potential of cesium hydride CsH changes its sign within the

speci�ed temperature range, indicating the following dissociation process:

CsH �! Cs+ 1=2H2: (4.3)

Figure 4.5 shows the corresponding dependence of the dissociation pressure pdiss
versus the temperature of the hydride crystal [Son94] for the pressure and temper-

ature conditions within the IPP RF-driven negative-ion source. The dissociation
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Figure 4.5.: Dissociation pressure of cesium hydride CsH for the hydrogen pressure conditions
of the IPP RF-driven negative-ion source of 10�3 - 10�4 Pa during the plasma-o¤, and 0.3 Pa

during the plasma-on phases.

pressure of CsH exceeds the hydrogen pressure of 0.3 Pa during the discharge

only for the temperature conditions of the plasma grid of TPG = 150 �C where a

dissociation process can be expected. In the plasma-o¤ phase, the lower source

pressure of 10�3 - 10�4 Pa is slightly above pdiss for the ion source wall tempera-

ture of TSource = 50 �C indicating that CsH is stable under these conditions.

As described in section 3.1.1, the production of negative ions is reduced by the

in�uence of hydrogen, adsorbed on the plasma grid surface. The thermal dis-

sociation of cesium hydride takes place at a temperature of 150 �C, taking into

account the hydrogen background pressure of 0.3 Pa. Hence, the thermal dis-

sociation and removal of CsH from the plasma grid is a relevant process and a

corresponding increase of the negative-ion production is expected. The calculated

dissociation temperature is in agreement with experimental observation, where

a performance increase of the negative-ion source was observed when using a

plasma grid temperature higher than 150 �C [SFF+06].
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Figure 4.6.: Phase diagram of the Cs-O system for the relevant temperature range.

Solubility of Impurity Species

Pure cesium is in the liquid phase for the temperature conditions at the walls

of the negative-ion source and the evaporation oven (see section 3.2.1). A dis-

solution of impurities in the liquid cesium can take place in this case that has

been investigated by Borgstedt [Bor86]: the solubility of CsH and CsOH in liquid

cesium is very limited and shows no interaction with the liquid cesium phase.

However, oxygen has a very high solubility in liquid cesium, as shown in �gure

4.6. For a wall temperature of Twall = 50 �C, a high oxygen solubility of 18 % is

expected. The phase diagram shows that the melting point of the cesium-oxygen

system depends on the oxygen content. While a low oxygen content will result

in a slight decrease of the melting point, cesium-oxygen compounds with higher

oxygen valences, such as Cs2O, which precipitate at a high oxygen content, shift

the melting temperature to 495 �C. The partial pressure of cesium in the gas

phase above a cesium-oxygen system drops signi�cantly in comparison to ele-

mental cesium. This is a result of the enthalpy of dissolution required to release

pure cesium vapor.
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4.2. Experimental Methods for Cesium Diagnostics

As described in the previous section, cesium has a very high chemical reactivity

and its behavior within N-NBI systems depends strongly on the speci�c surface

and pressure conditions. The development and application of cesium diagnostics

is therefore essential for understanding the fundamental processes taking place

within the negative-ion source. Diagnostics systems are also highly important for

determining input parameters for cesium transport models to be used for opti-

mization and design calculations.

Most of the data available is for pure, metallic cesium under ultra-high vacuum

conditions and does not consider chemical reactions with impurities. The avail-

ability of a wide spectrum of diagnostics that are suitable for studying speci�c

physical or chemical processes is therefore very important. It is not possible to

perform all of these systematic experiments at the IPP test facilities in parallel

with the source operation, where the accessibility is limited. The �exible arrange-

ment of the experimental con�guration that requires a frequent opening of the

apparatus is only given in a small-scale laboratory environment. Thus, dedicated

experiments at the University of Augsburg were performed.

4.2.1. Experimental Setup

The experimental setup to determine properties of cesium at ion source relevant

conditions requires a high degree of �exibility in order to design and use sev-

eral types of di¤erent cesium diagnostics. Experiments were carried out in a

small-scale, inductively-coupled plasma source where vacuum and plasma condi-

tions comparable to those close to the converter surface of the IPP RF-driven

negative-ion source could be achieved. This means that a residual gas pressure

of 10�4 to 10�3 Pa is reached during the plasma-o¤ phase, while a hydrogen gas

pressure in the Pa-range with an electron density of up to 1017 m�3 and an elec-

tron temperature of Te = 2 eV is obtained during the discharge [SFAP01].

The experiments were carried out in a cylindrical vacuum chamber (stainless

steel) of 15 cm in diameter and 10 cm in height. The plasma is generated by

inductive coupling by a planar coil with a Faraday screen on top of the cylinder,

as illustrated in �gure 4.7. A generator frequency of 27.12 MHz at a maximum

power of 600 W can be used.

The temperature-controlled chamber walls (Twall = 20 �C) form a sink for the

cesium �ow, as described in section 5.1.1. A constant wall temperature is main-
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Figure 4.7.: Schematic side view (left) of the ICP plasma source used for basic cesium exper-

iments. The setup of the di¤erent diagnostics, access ports and the cesium dispenser is given

on the right.

tained by water cooling.

Several ports are available in order to attach cesium sources and diagnostic sys-

tems to the plasma source. The chamber is equipped with three removable quartz

windows and an easily exchangeable bottom plate with additional ports. This

allows a versatile arrangement of diagnostics, samples, and cesium sources as

indicated in �gure 4.7. The experiment setup at the University of Augsburg is

called ICP experiment in this thesis.

In addition to spectroscopic methods, a surface ionization detector (SID) and a

movable quartz microbalance (QMB) are available for cesium detection. A ce-

sium dispenser, as described in section 4.2.7, and temperature stabilized metal

samples can be mounted inside the system to carry out systematic experiments.

Di¤erent types of cesium sources can be attached to one of the available ports.

4.2.2. Quartz Microbalance

The growth and desorption of cesium layers are both important aspects for un-

derstanding the dynamics of cesium inside a negative-ion source. A quartz mi-

crobalance system was used to measure the number of adsorbed cesium layers on

a quartz detector plate, being covered with gold. The deposited cesium forms

CsAu, ensuring the total absorption of the intercepted cesium and a negligible

desorption rate from the microbalance [KF07].
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A standard microbalance system uses a sensor that is based on a single quartz

plate. Two quartz plates are used in order to increase the stability of the mea-

surement. This method reduces external in�uences that are not related to the

cesium coverage, for example temperature e¤ects.

One quartz plate is exposed to the cesium �ow, while the other one is used as a

reference. The resonance frequency di¤erence between the two quartz plates that

are excited to resonant oscillations by an ac-voltage is measured. The second

quartz plate is located inside the microbalance and maintains its original reso-

nance frequency.

The frequency di¤erence for a microbalance is given by [Sau59]:

�f = �Sf
�m

A
. (4.4)

The Sauerbrey constant Sf = 0.04844 Hz cm2/ng includes the material speci�c

properties of the quartz plate. A frequency di¤erence of �f = �4:995 Hz is
calculated for the area of the quartz plate of A = 1 cm2 and a mass di¤erence

�m that corresponds to a single cesium monolayer on the exposed quartz plate.

Therefore, the microbalance system is able to measure the amount of cesium

on the detector without calibration making the microbalance perfectly suited to

measure the desorption �ux from a cesiated sample. However, the measurement

is limited to a maximum cesium coverage on the detector plate, which causes a

strong damping of the resonance frequency. This makes a further measurement

impossible and a cleaning of the sensor is necessary.

Thus, the microbalance system is not suited for the monitoring of a high cesium

�ux over a long time period, as required for the monitoring of cesium sources

that are operated over a period of several weeks. The use of a cesium diagnostic

with high detector temperatures (several 100 �C) is a possible way to overcome

this problem. As a consequence of temperature generated frequency instabilities,

it is impossible to operate the microbalance at these high temperatures. This is

possible by using surface ionization detection.

4.2.3. Surface Ionization Detector

A surface ionization detector that is also known as Langmuir-Taylor detector

[Tay29] was designed and tested. It is a very robust device that permits a precise

measurement of atomic beams in a vacuum environment.

The detection principle is based on the surface ionization process and makes use

of the large ionization probability of ground state atoms from elements with a
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Figure 4.8.: Schematic illustration of a surface ionization detector (SID) consisting of the
tungsten ionization �lament and the biased ion collector.

low ionization potential. Therefore, this type of detector is mostly used for alkali

atoms, such as cesium. In particular cesium has the lowest ionization potential

(�Ion = 3.89 eV) of all elements [Lid07].

A hot metal �lament made from a high work function material (tungsten) is

placed directly in the cesium �ow. Cesium atoms, sticking on the �lament for a

short time, undergo a surface ionization process and leave the �lament as cesium

ions. A bias voltage is used to drain the cesium ions from the �lament onto a

collector cathode that is heated to the same temperature as the �lament in order

to avoid a perturbation of the measurement by ad- and desorption of cesium

from the detector. The drain current within the range of several hundred nA

is measured between the �lament and collector. A schematic illustration of the

surface ionization detector system is shown in �gure 4.8.

The ionization detector allows a time-resolved detection of the number of atoms

per second in the cesium beam. The detected ion current strongly depends on

the surface conditions of the ionization �lament. Surface ionization of a cesium

atom takes place when the ionization potential �Ion of the atom is comparable

to the work function � of the tungsten �lament at a surface temperature T . The

atom is re-emitted from the surface as a positive Cs+ ion with a probability P+

and as a neutral atom with the probability 1� P+. The probability P+ is given
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Figure 4.9.: Cesium ionization probability (left hand side) and mean residence time of cesium

(right hand side) on the hot �lament of the SID versus the work function and coverage of the

�lament metal for a range of relevant temperatures.

by the Saha-Langmuir law:

P+ =
1

1 + g0

g+
exp(�Ion��

kb T
)
; (4.5)

where g0, g+ are statistical weights of the ionic and atomic ground state. While

the work function of a pure tungsten surface is 4.55 eV (see section 4.1), cesium

is known to lower the work function of a surface signi�cantly.

Figure 4.9 shows the dependence of the ionization probability of cesium on the

�lament work function for relevant �lament temperatures. The work function

dependence on the cesium coverage for polycrystalline tungsten was taken from

[TL33]. Low �lament temperatures result in a low work function of the �lament

itself by the formation of a permanent cesium coating according to the calcula-

tions presented in �gure 4.9. Temperatures below 1000 �C create a cesium layer

on the �lament with a work function below 2.9 eV and a residence time within

the range of seconds, which results in a negligible ionization probability. A �la-

ment temperature of 1400 �C is necessary to reduce the residence time to 0.01 sec

in order to obtain a clean tungsten surface so that a high work function of the

�lament surface and a high ionization probability of cesium can be ensured. In

doing so, a reliable and reproducible operation of the detector can be provided.

The surface ionization detector is a powerful device to measure intense cesium

�ows over a long time, because the absorbed cesium is evaporated by the hot
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surfaces within short times. This is ideal for testing the operation of cesium

sources. Nevertheless, the ionization detector is not suitable for measurements

in temperature-sensitive situations, such as the measurement of the desorption

�ux from cesium-covered metal surfaces. Perturbation e¤ects caused by the ra-

diative heat �ux from the hot �lament on the sample surface will in�uence the

measurement. Due to the complex nature of the ionization detector measurement

by the dependence on the �lament geometry, a calibration by a cesium source of

a known �ux is required.

The use of the ionization detector is, however, restricted to measurements in a

vacuum environment, as a �nite resistance is created between �lament and the

biased collector in a plasma environment. Thus, the ionization detector measure-

ment is disturbed by the electron or ion currents present during the discharge.

4.2.4. Optical Emission Spectroscopy

Optical emission spectroscopy (OES) is a non-perturbative method that measures

the spectral intensity distribution of the radiation emitted from a speci�c plasma

volume. It can be used to determine the densities of species in a plasma. The

excitation of atomic cesium from the ground state can take place when collisions

with electrons occur or when photons are absorbed according to the following

processes:

Cs(6s) + e� �! Cs(6p)+ e�; (4.6)

Cs(6s) + hv �! Cs(6p).

De-excitation from the state i = 6p to the ground state k = 6s can take place

by spontaneous emission of light at � = 852.1 nm. De-excitation by electron

collisions is not important for the given case due to the relatively low electron

density (ne < 1018 m�3). The intensity of the emitted radiation "ik is given by the

population density ni of the state 6p and the corresponding Einstein coe¢ cient

Aik, which is the probability for de-excitation by spontaneous emission:

"ik = niAik: (4.7)

The OES gives a line-of-sight integrated signal of the emitted radiation at the

speci�c wavelength. An optical �ber is used to transmit light to the spectrometer

that, in turn, uses a di¤raction grating to separate the di¤erent wavelengths of

the light beam and then detects the spectrum with a CCD-chip1.
1CCD: charge coupled device.
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Figure 4.10.: Emission rate coe¢ cients from the line of neutral cesium at 852 nm and from

the line of singly-ionized cesium at 460 nm (scaled by a factor of 1000).

The population density of the excited state can then be calculated by applying

equation (4.7) to the measured line intensity and using a population model (ther-

modynamic equilibrium, corona model, collision-radiative-model).

For example, the corona model considers only the excitation from the ground

state by electron collisions, which are balanced by the spontaneous emission.

This simpli�cation is valid for very low electron densities only (ne . 1017 m�3)

depending on the investigated particle species. The excitation by collisions with

electrons gives the following intensity of emitted radiation:

"Cs = "ik = nkneX
Cs
e¤,em (Te; ne; ::: ) ; (4.8)

where XCs
e¤,em is the e¤ective emission rate coe¢ cient for the radiative transitions

by this process at the electron temperature Te and density ne [FFF+06].

The line emission coe¢ cient "Cs depends in the �rst order only on the electron

density and temperature. Hence, the emission coe¢ cient depends on the plasma

parameters that may change during a discharge or between the pulses. These

dependences can be eliminated by dividing the emission coe¢ cient "Cs for the

line of neutral cesium at 852 nm by the corresponding emission coe¢ cient "H�
of the Balmer line H�. The electron densities chancel each other out while the

dependence on the electron temperature is diminished signi�cantly by dividing

the two respective e¤ective rate coe¢ cients. Hence, the line ratio:



62 Chapter 4. Experimental and Theoretical Aspects for Cesium

"Cs
"H�

=
nCs /neX

Cs
e¤,em

nH /neX
H�
e¤,em

(4.9)

is used in order to evaluate an estimate of the cesium signal for the temperature

evolution of the cesium density on the plasma volume. The variable XH�
e¤,em de-

scribes the corresponding e¤ective rate coe¢ cient for H� and nH the density of

atomic hydrogen.

Figure 4.10 shows the emission rate coe¢ cients from a line of neutral cesium

at 852 nm and from the line of singly-ionized cesium at 460 nm, taken from

[FFF+06]. According to �gure 4.10, the rate coe¢ cient for emission from cesium

ions is 3 - 5 orders of magnitude lower than the one from the neutral cesium line,

which depends on the electron temperature. This results directly in less radiation

from the ionic line at 460 nm than for the atomic line at 852 nm for the same

conditions, even if a high amount of cesium is ionized. Thus, depending on the

cesium conditions within the ion source, ionic cesium is below the detection limit

of the optical emission spectroscopy.

4.2.5. Work Function

The work function of a cesium-covered surface is an important parameter for the

conversion yield in negative ion sources, as described in section 3.1.1. The work

function of cesium-coated molybdenum samples, inserted in the ICP experiment,

is measured utilizing the photoelectric e¤ect. The molybdenum samples were cut

from the same material that is used for the plasma grid used at the IPP test

facilities. Figure 4.11 shows a schematic view of the experimental setup. A time

resolved measurement of the work function is performed exposing the sample to

a cesium �ux, while monitoring the photocurrent generated by UV-irradiation.

Photons of a particular wavelength are produced by a high power white-light

mercury vapor lamp and interference �lters. A �lter system for wavelengths

between 239 nm and 405 nm is used to select a speci�ed photon energy.

Electrons are released from the sample by photons with a certain energy h�, if

the work function is below the photon energy:

h� = �+
1

2
mev

2
e ; (4.10)

where � denotes the work function of the sample and 1
2
mev

2
e the kinetic energy of

the released electrons. A bias voltage is applied to the chamber and the sample
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Figure 4.11.: Experimental setup to measure the work function of an UV-irradiated sample
in a pulsed plasma environment by the photoelectric e¤ect.

that is electrically isolated from the chamber walls in order to drain the photocur-

rent.

In the experiment, the intensity of the photon �ux depends on the photon energy.

This is caused by the transmission properties of the �lters for a speci�c wave-

length and the spectrum of the lamp. Thus, a calibration by the intensity of each

�lter and lamp is required. The dependence of the (calibrated) photocurrent I

on the photon energy h� is analyzed by the Fowler method [Fow31]. A �tting

formula with the work function � as a �tting parameter, is applied:

ln

�
I

T 2

�
= C + ln

�
�

�
h� � �
kb T

��
; (4.11)

� (x) =
�2

6
+
x2

2
�
�
exp (�x)
11

� exp (�2x)
22

+
exp (�3x)

32

�
;

where T is the temperature of the sample and C is a constant. A detailed overview

on the experimental setup of the work function measurement in a vacuum envi-

ronment is given in [KF07].

A plasma environment is required to generate negative hydrogen ions from a low

work function surface. Thus, the relevant measurements of the work function of a

converter surface will have to take place during plasma operation. The resulting

current on the biased sample during a discharge is several orders of magnitude

higher than the photocurrent from the irradiated sample. Therefore, no work

function measurement is possible during plasma exposition of the surface.
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Hence, the work function setup was enhanced by operating the plasma source and

the sample bias in a pulsed mode. This allows the measurement of the photocur-

rent from the irradiated sample in the plasma-o¤ times with a Lock-In ampli�er

at quasi-continuous plasma conditions. The measurement circuit for the work

function measurement setup during pulsed plasma operation is given in detail in

appendix A. A pulse frequency between 16.5 Hz and 74 Hz is necessary in order

to provide a su¢ ciently long time interval �t for the measurement. The admix-

ture of helium to the hydrogen plasma is required in order to obtain an improved

stability of the discharge in pulsed operation. However, helium is chemically inert

and, thus, does not a¤ect the chemical processes on the surface.

Two di¤erent types of cesium sources are used for cesium release within the scope

of this work. One way to accomplish cesium release is by thermal desorption from

a reservoir of pure cesium. The cesium �ux from this cesium evaporation oven is

regulated by adjusting the temperature of the liquid cesium. Due to the sensi-

tivity of the evaporation rate on the temperature of the vessel that contains the

cesium supply, a control of the injection rate is possible.

4.2.6. Cesium Evaporation Oven

Liquid cesium based systems are commonly used for cesium injection in negative-

ion sources for neutral beam applications [SFF+06][T+00][K+00][T+98]. A

schematic overview of the IPP cesium evaporation oven is given by �gure 4.12.

The oven consists of three components with individual temperature control sys-

tems: 1) the body (blue), 2) the sealed glass-ampoules containing 1000 mg of

cesium (yellow) and 3) the conduction pipe (red). Component temperatures of

up to 300 �C are obtained by heating elements. Temperature stability can be

ensured by a system of thermocouples and feedback circuits. A new con�gura-

tion with additional heating elements (red arrows in �gure 4.12) at the end of the

body was tested within the scope of this work.

Pure cesium is irreversibly released by breaking the glass of the ampoule from out-

side. Due to gravity, the liquid cesium (Tmelt = 28.5 �C) �ows from the ampoule

into the body, and cesium evaporation then starts depending on the temperature

conditions of the system. The cesium vapor pressure in the body increases and

a cesium �ow through a set of three nozzles at the head of the conduction pipe

into the expansion region of the ion source is generated.

The cesium �ow through the conduction pipe is proportional to the evaporation

rate of the liquid reservoir regulating the vapor pressure inside the cesium oven.
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Figure 4.12.: Schematic drawing of the evaporation oven, developed at IPP, for cesium in-

jection at the negative-ion source test facilities. Additional heating elements at the ends of

the body were tested within the scope of the thesis. These are indicated by red arrows in the

drawing.

This evaporation rate is controlled by the temperature of coldest spot within the

total system, where the cesium from the ampoules condenses. The body that is

directly connected to the ampoules was chosen to be the cold-spot of the sys-

tem and is used for �ow control. With the feedback system it is possible to set

the body to a speci�c temperature, while the pipe and the ampoules are kept

at higher temperatures (�T = 20 �C) to prevent cesium accumulation on these

components and the associated uncontrolled evaporation. Depending on the de-

sired cesium �ow, a body temperature between 110 �C - 220 �C can be set. The

response time of the cesium �ow control is determined by the thermal conductiv-

ity and heat capacity of the components of the system.

The cesium evaporation oven is connected to the vacuum of the ion source without

a valve system that could act as a cold-spot. Stopping the cesium �ow into the

ion source is done by lowering the temperatures of all components as described

in section 5.3. During inactive phases of the ion source, such as overnight, all

temperatures of the oven components are decreased to room temperature. How-
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Figure 4.13.: Schematic picture and photograph of a SAES cesium dispenser, containing

cesium chromate, equivalent to a release of 10 mg of pure cesium.

ever, the missing of a valve system has disadvantages. Besides the vulnerability

of the liquid cesium to impurities from the test facilities that can enter the oven

during the night, it is required to deplete the cesium in the oven before the oven

can be removed from a particular vacuum system. Cesium that is exposed to

atmospheric pressure becomes chemically contaminated, which is also dangerous

because of the explosion hazard.

4.2.7. Cesium Dispenser and Dispenser Oven

A di¤erent type of cesium source is the alkaline-metal dispenser that is com-

mercially available from SAES2. Dispensers were developed in order to provide a

controllable release of pure cesium, as it is required for the production of photo-

cathodes [SPA09][SCF85].

The working principle of a dispenser is based on the release of cesium from the

decomposition of a stable cesium compound by a reaction with a reducing agent.

Dispensers were used to perform fundamental investigation of the properties of

cesium and to test diagnostic systems within the scope of this work. Figure

2SAES Getters S.p.A., Viale Italia 77, 20020 Lainate (Milan), Italy.
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4.13 shows a photograph and a schematic view of a commercial available cesium

dispenser (Cs/NF/8/25/FT 10+10) containing an equivalent to 10 mg of pure

cesium.

In contrast to liquid reservoir based systems, alkaline-metal dispensers do not

contain pure cesium. A SAES dispenser contains cesium chromate Cs2CrO4 and

the getter material ST 101, a mixture of zirconium and aluminium. This mixture

is thermodynamically stable for temperatures below 500 �C. In the absence of the

getter material ST 101, the Cs2CrO4 itself is stable and will not release cesium

until nearly 1000 �C [SPA09]. The production and release of pure cesium starts

at elevated temperatures according to the given reaction paths:

4Cs2CrO4 + 5Zr �! 8Cs(g)+ 5ZrO2 + 2Cr2O3; (4.12)

6Cs2CrO4 + 10Al �! 12Cs(g)+ 5Al2O3 + 3Cr2O3:

Heating the dispenser housing generates the required temperature to initiate re-

action (4.12). Regulation of the reaction and thus the cesium evaporation rate

is possible by adjusting the current through the dispenser. Currents of the order

of 6 - 7 A are typically used to operate the speci�ed dispenser. It is necessary to

activate the dispenser by applying a heating current of 3 A for several minutes

before cesium is released.

Reactive species like H2O and O2 are harmful to the ST 101 getter material, since

they can form refractory compounds with Zr and Al. A vacuum environment is

therefore necessary to store the dispensers. The angular distribution of the ce-

sium �ow from the slit of the dispenser is given by an equally distributed �ow

within an opening angle of 120� [PBB07].

Dispenser systems are used routinely for laboratory investigation of cesium prop-

erties and have proven their reliability and stability in small (several cm2)

negative-ion sources with mono-aperture extraction systems. For example, ce-

sium dispensers are successfully applied on the negative-ion source front end of

the SNS spallation neutron source at Oak Ridge National Laboratory [WSMK05].

In comparison to the evaporation oven containing liquid cesium, dispensers have

many advantages, like their compact design and the chemical stability of the ce-

sium compound in contrast to liquid cesium. These advantages are explained

in more detail in section 5.3.2. Nevertheless, there are also disadvantages like

the limited reservoir of cesium and the sensitivity to thermal loads during plasma

exposure. The corresponding heat load is capable of increasing the dispenser tem-

perature, which interferes with the temperature control by the applied heating

current. This e¤ect can result in a quick depletion of the total cesium inventory



68 Chapter 4. Experimental and Theoretical Aspects for Cesium

Figure 4.14.: Schematic drawing of a dispenser-based cesium oven. The dispenser is located

in the body (orange) of the system. A heating current of 6 - 7 A is used to create the cesium

release. The pipe (red) is connected to the vacuum system of the experiment.

of the dispenser.

The application of dispensers at the IPP negative-ion source test facilities is under

discussion for the future either by a direct mounting in the ion source chamber

(see section 6.3.2) or by the replacement of the cesium ampoules in the cesium

evaporation oven, as described in the following. A prototype for a dispenser-

based cesium oven (cesium dispenser oven) was designed and constructed within

the scope of this work in order to �nd ways for advanced cesium control. The oven

housing is necessary to protect the dispenser from the heat load by the plasma

that, as described above, creates uncontrolled cesium release from the dispenser.

This dispenser-based cesium oven is the �rst step towards the advanced engi-

neering of this concept for the future use at the IPP negative-ion source test

facilities. However, the dispenser oven prototype will be a small-scale cesium

injection system that can be used as a stable and reliable cesium source for ce-

sium experiments at the University of Augsburg. The use of the dispenser oven

is especially interesting for experiments during discharge phases where the oper-

ation of the unprotected dispenser is disturbed by thermal load in the plasma.

A �exible use of liquid reservoir based systems is limited by the high amount of

cesium (1000 mg) in an ampoule, which has to be depleted before the oven can

be opened safely.

Figure 4.14 shows a CAD drawing of this dispenser oven. The dispenser is lo-

cated in the body of the oven that is heated to a temperature of 250 �C by

heating circuits in order to avoid cesium accumulation and uncontrolled thermal

desorption from the walls of the system. Cesium transport into the chamber of

the associated experiment takes place through the connecting pipe that is heated

to a temperature of 210 �C.
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The cesium release is solely controlled by the heating current through the dis-

penser. Therefore, the temperatures of the oven components are kept perma-

nently at the speci�ed temperature during the operational period of the system.

The chosen temperatures are signi�cantly higher than in the evaporation oven in

order to avoid cesium condensation and re-evaporation e¤ects.

4.3. Cesium Transport Code CsFlow3D

Numerical simulations are essential tools to improve the understanding of cesium

transport processes within the negative-ion sources. Model calculations can help

to optimize the operation of the ion source and contribute to the development of

new ion sources and associated components.

The test-particle Monte Carlo algorithm is an important method to study macro-

scopic transport phenomena. It relies on the computation of large ensembles of

independent test particles within a speci�ed particle background for a static elec-

tric and magnetic �eld. This method is applicable for systems, where the inter-

action between the particles of the transported species can be neglected. Hence,

the method is suitable to compute the transport of minority species through a

background of �eld particles at a high density with respect to the density of the

test particles. At the parameters of negative-ion sources, this condition is valid

for the transport of neutral and ionic cesium, but also for the transport of nega-

tive hydrogen ions [GWF09].

An extension to the consideration of particle-interaction, related to charge-

generated forces, is done by the Particle-In-Cell (PIC) algorithm [BL91][HE88]

that treats a large number of interacting, charged particles simultaneously. The

electric forces, generated by the space charge of the particles itself, are projected

onto a computational grid at each time step to compute the particle positions and

velocities in the next time step. However, PIC algorithms have high demands on

computation time and memory. This limits their application for the plasma pa-

rameters of the negative-ion source to a small computation domain (several cm).

Simulating the plasma sheath that is of the order of several Debye lengths re-

quires the consideration of the described particle interaction.

This is done by the 1D3V PIC-code BACON [WGF09] that was developed at the

IPP to improve the understanding of the plasma sheath in negative-ion sources.

In order to simulate the transport of neutral and atomic cesium, a computational

domain of the size of the total negative-ion source is necessary. The applica-
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tion of a PIC-based algorithm for this type of cesium transport problems would

exceed the limits of today�s computation power by far, while probabilistic particle-

transport codes can be applied at more reasonable computational demands.

The test-particle Monte Carlo method has been applied successfully to simulate

the impurity transport in Tokamak research [MCT+08][KPW+00]. The latter

reference describes the ERO code that is used to investigate the erosion and

deposition processes in the vicinity of a limiter in the boundary layer of a mag-

netically con�ned fusion plasma. Nevertheless, the ERO code is not applicable to

model the cesium transport in negative-ion sources: the transport simulation of

cesium has to consider a strong temporal variation of the �ow conditions, which

is a consequence of alternating hydrogen pressure conditions in the negative-ion

source for plasma-on and o¤ phases. This results in an alternation of transport

regimes for cesium and cesium ions, which is not considered in a Tokamak trans-

port code.

No simulation for the transport of cesium during the vacuum and discharge phases

of negative-ion sources has been available in scienti�c literature. Therefore, the

Monte Carlo based transport code CsFlow3D, considering the speci�c conditions

within negative-ion sources, was newly developed and applied to study cesium

transport processes.

4.3.1. Test-particle Monte Carlo Method

Transport Equation

CsFlow3D uses the test-particle Monte Carlo algorithm and traces a signi�cant

amount (104 per cm2) of independent test particles through the electric and mag-

netic �elds of the ion source, considering collisions with a prede�ned background

of �eld particles at a given density and velocity distribution. An isotropic Maxwell

distribution was used for the temperature distribution of all �eld particles.

The species of the test particle is subject to changes during the trajectory com-

putation due to the ionization of cesium. Thus, di¤erent force terms have to be

considered for the transport computation.

In case of atomic cesium, this force is solely given by a collision term, while the

simulation of ionic cesium requires the consideration of an additional Lorentz

force term in order to consider the e¤ect of electric and magnetic �elds on the

ion. The force ~F acting on a test particle with charge q and mass m, located at

position ~r with velocity ~v, is given by a combination of the Lorentz force (for the



4.3. Cesium Transport Code CsFlow3D 71

electric �eld ~E (~r) and the magnetic �eld ~B (~r)) and the collision term ~FCol:

~F (~r;~v) = q
�
~E (~r) + ~v � ~B (~r)

�
+ ~FCol(~r;~v): (4.13)

The collision term is determined by the local density ni(~r) and temperature Ti(~r)

of the species of the �eld particles involved in the collision process:

~FCol(~r;~v) = ~FCol(n1(~r); T1(~r):::nN(~r); TN(~r); ~v); (4.14)

for N di¤erent species of �eld particles. The corresponding trajectory equation

is solved by a combination of a time-step based integration method and a Monte

Carlo collision algorithm. The determination of the parameter �elds ~E (~r) ; ~B (~r),

ni (~r) and Ti (~r) for the test-particle computation is done by a 3D linear inter-

polation method. A description of the corresponding numerical methods for the

time-step based integration method and for the interpolation method is available

in appendix B. Contour plots of computed magnetic �elds within the IPP pro-

totype source are given in the appendix C and in [GWF09].

An overview of the probabilistic treatment of the inter-particle collision term
~FCol(~r;~v) is given in the following section.

Collision Treatment

Collision processes can be characterized by the collision frequency !i that depends

on the density ni(~r) of the �eld particle and the distribution of the relative velocity

�~vi of test and �eld particle. The frequency for a collision with �eld particles

with a temperature Ti(~r) is determined by the mean value of the product of

the collision cross-section � (�~vi) and the relative velocity �~vi for a Maxwellian

velocity distribution of ~viField with �vi =k~viField � ~vk, multiplied by the density of
�eld particles ni(~r):

!i = ni(~r) h� (�vi) �viiMaxwell;Ti . (4.15)

A distinction between short-range collisions and long-range collisions is required

for the Monte Carlo calculation. The use of special methods to simulate long-

range collision is necessary to consider Coulomb collisions between charged par-

ticles because of the long interaction length of the Coulomb potential. Other

processes, such as elastic collisions between neutral particles, have an interaction

length within the order of the diameter of the atom or molecule and can therefore

be treated by short-range collisions methods, described in the following section.
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Short-Range Collisions Short-range collisions are considered by a collision

probability P icol that determines if a collision process takes place during the time

step �t. This probability is determined by the path-length-estimator method

[Bir91]:

P icol = 1� e�!i�t. (4.16)

A normally distributed random number RND 2 (0; 1) is used to decide whether
the speci�ed collision process takes place during the time step �t. The collision

takes place if the condition

RND < P icol; (4.17)

is satis�ed. This comparison has to be performed for each particle at each time

step.

If a collision takes place, the post-collisional velocities of the test and �eld particle

are determined according to a Monte Carlo collision treatment [MSD93]. The

relative velocity �~v of test and �eld particle is rotated according to a normal

probability distribution. This rotation is speci�ed by the scattering angles � and

� as illustrated by �gure 4.15. By this way, the vector �~vrot = �~v(t+�t)��~v(t)
is determined that is de�ned as the di¤erence of the relative velocity vectors

before and after the collision. The determination of the post collision velocities

v (t+�t) and vField (t+�t) is given by the following equations:

v (t+�t) = v (t) +
mField

mField +m
�~vrot; (4.18)

vField (t+�t) = vField (t)�
m

m+mField
�~vrot:

It can be shown easily that momentum and energy of the binary system is not

changed by applying formula (4.18).

A di¤erent treatment is, however, necessary for Coulomb collisions that have a

long interaction length.

Long-Range Coulomb Collisions Long-range Coulomb collisions between

charged test particles and charged �eld particles are taken into account for

every time step of the trajectory computation. A cumulative deviation by

frequent small angle Coulomb scattering is considered by a Gaussian probability

distribution of � and a normal distribution of �; using the collision frequency !

for Coulomb collisions as half width of the Gaussian distribution [MSD93]:

� = [�2!�t ln (1� RND1)]1=2 ; (4.19)

� = 2�RND2; (4.20)
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Figure 4.15.: Schematic view of the rotation of the vector of the relative particle velocity

�~v(t) according to the collision angle � and polar angle � to the post-collision velocity vector

�~v(t+�t).

where RND1 and RND2 denote two independent random numbers with a normal

distribution.

4.3.2. Flow Regimes

The transport of atomic and ionic cesium within the negative-ion source takes

place in two di¤erent �ow regimes. This is a consequence of the di¤erent hydrogen

pressure conditions during the discharge and the vacuum phases between the

plasma pulses.

Vacuum or Plasma-O¤ Phase

A residual-gas pressure of p � 10�3 - 10�4 Pa is established in the plasma-

o¤ phases. An estimation of a purely hydrogenic background density with the

corresponding Cs-H2 collision cross-section, described in section 4.3.3, results in
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a mean-free path length � of cesium within the range of several meters. Thus,

a free molecular �ow regime is obtained, where the atomic cesium test particles

follow straight lines and the transport is determined by the geometry of the ion

source.

Discharge or Plasma-On Phase

A hydrogen pressure of pH2 � 0:3 Pa is established during the discharge, which
results in a change of the �ow conditions. The collision cross-section of the

Cs/Cs+-H2 systems yields a mean free path length � below 1 cm and the previ-

ously described collision processes of Cs and Cs+ with H2, H+ and e� have to be

considered.

An overview of the collision processes of atomic and ionic cesium with background

gas and plasma �eld particles, implemented in CsFlow3D, is given in the following

section.

4.3.3. Collision Processes

Collisions of Cesium with the H2 Background Gas

Atomic and ionic cesium will undergo elastic collisions with the hydrogen back-

ground gas - the �eld-particle species with the highest density within the negative-

ion source. A constant and homogeneous molecular hydrogen density of nH2 =

5x1019 m�3 with a gas temperature of TH2 = 930
�C during the discharge phase

was used for the cesium-transport simulation [FFF+06][FW06]. The collision

cross-section of cesium with the hydrogen background depends whether cesium

is in a neutral or ionic state:

Elastic Collisions of H2 with Cs Neutral cesium can undergo the following

elastic collision process with H2:

Cs+H2 ! H2 + Cs. (4.21)

The collision cross-section is determined by the van-der-Waals potential V (r) �
r�6 between the collisions partners. Quantum mechanical scattering theory

[LL58] yields an inverse velocity dependence of the cross-section:

� (vcm) =
CVdW

v
2=5
cm

; (4.22)
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where CVdW is the interaction constant for the Cs-H2 system, while vcm is the

relative velocity in the center-of-mass system. A detailed overview of the interac-

tion constant for the van-der-Waals potential and the Cs-H2 system is available

in [RB59].

Elastic Collisions of H2 with Cs+ Cesium ions, generated by electron impact

ionization from neutral cesium, can undergo the following elastic collision process

with H2:

Cs+ +H2 ! H2 + Cs
+: (4.23)

The Langevin theory describes the interaction of a cesium ion with neutral hy-

drogen by a polarization of the hydrogen molecule. An induced dipole moment

is created by this process [LL05]. The corresponding Langevin cross-section is

given by:

� (vcm) =
CL

vcm
; (4.24)

where the interaction constant CL is related to the polarizability of the H2 mole-

cule and is available from [Lid07].

Collisions of Cesium with the Plasma Background

An important category of processes for the cesium transport are collisions of ce-

sium neutrals and ions with the electrons and positive hydrogen ions. The e¤ect

of the magnetic �lter �eld and the distance between the driver and the extraction

region results in a spatially varying plasma parameter pro�le within the negative-

ion source. This creates a decrease of the ion density nH+ and electron density

ne from the range of 1018 m�3 at the exit of the driver of the ion source to the

range of 1017 m�3 in the expansion region was observed [FFF+06][FW06]. Fur-

thermore, the electron temperature drops from about Te = 20 eV at the driver

to a temperature of Te < 1 eV near the plasma grid [Die07].

The CsFlow3D code uses the approximation of a quasi-neutral plasma with axial-

symmetric maps of plasma-particle densities and temperatures. An exponential

decay in x-direction and a parabolic pro�le in the perpendicular yz-plane (see

coordinate system in �gure 3.9) of the plasma density and temperature was im-

plemented. These maps were constructed on basis of experimental data of the

hydrogen ion density nH+ and electron temperature Te, taken from probe measure-

ments [Die07][MDCK+09][TBM04]. The electron temperatures were determined
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Figure 4.16.: Rate coe¢ cient for electron impact ionization of neutral cesium and radiative

recombination of cesium ions in dependence of the electron temperature.

by the application of the Boyd-Twiddy method [CD09]. Speci�c details regarding

these �eld-particle data maps are given in appendix D.

Ionization Collisions of Cs by e� Cesium has the lowest �rst ionization energy

�ion = 3.89 eV of all elements [Lid07]. The ionization of neutral cesium by

electron-impact collisions:

Cs+ e� ! Cs+ + 2e-; (4.25)

is therefore expected to be a very e¢ cient process. The rate coe¢ cient Xion =

h� (ve) veiMaxwell for the electron-impact ionization was calculated from the exper-
imentally determined cross-section in [×SK+06]. The collision frequency is then

determined according to the electron density ne (~r) and temperature Te (~r) at the

test particle position ~r according to formula 4.15.

Figure 4.16 shows the dependence of the electron-impact ionization rate coe¢ -

cient on Te. As a consequence of the Maxwell velocity distribution, a non-zero

rate coe¢ cient is obtained for electron temperatures below the �rst ionization

energy. A strong decrease of Xion is observed for Te < �ion. The inverse process

of (4.25), the three-body recombination, is negligible for the electron densities

within the negative-ion source.
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The ionization energy of Cs+ is �+ion = 23.16 eV [Lid07] that is signi�cantly higher

than the �rst one. This is related to the stable Xe-like con�guration of the ce-

sium ion. As a consequence of the high second ionization energy, the formation

of Cs2+ ions is neglected for the transport calculations. This approximation is

valid since cesium is predominantly released in the expansion region were the

electron temperature is not high enough for an e¢ cient second ionization. How-

ever, the implementation of the formation of Cs2+ ions in CsFlow3D is possible

if the corresponding cross-section is available.

Radiative Recombination of Cs+ Besides the already mentioned three-body

recombination, cesium ions can be neutralized by the radiative recombination

process:

Cs+ + e� ! Cs+ h�: (4.26)

The radiative recombination rate coe¢ cient was calculated by an empirical for-

mula [Hut02] considering the recombination to level n of neutral cesium:

h�r,nvi = 5:2� 10�20 Z
�
�n
Te

�3=2
exp

�
�n
Te

�
Ei

�
�n
Te

�
[m3 s�1]; (4.27)

Ei(y) =

1Z
y

exp(�s)
s

ds; (4.28)

where �n is the ionization energy of the nth level and Z the ionic charge number.

The total recombination rate coe¢ cient is then determined by forming the sum

of h�r,nvi over all levels.
Figure 4.16 shows the dependence of the rate coe¢ cient on the electron temper-

ature Te. The rate coe¢ cient increases especially for lower electron temperatures

and values equivalent to the rate coe¢ cient for ionization are obtained for very

low electron temperatures of Te < 0.2 eV. Nevertheless, the recombination coef-

�cient is several orders of magnitude lower than the ionization coe¢ cient for the

electron temperatures within the negative-ion source, which is a consequence of

the low ionization energy of cesium.

Wall Recombination of Cs+ Wall recombination is the most e¢ cient mecha-

nism of cesium neutralization for the parameters within the negative-ion source:

Cs+ + e�(Wall)! Cs. (4.29)
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The process is treated rather simply in CsFlow3D. Cesium ions that hit an arbi-

trary wall within the ion source are converted to neutral cesium and re-emitted

at a rate depending on the surface conditions.

Elastic Coulomb Collisions of Cs+ with H+x As a consequence of the very low

ionization energy of cesium and the corresponding large electron-impact ioniza-

tion cross-section, a high fraction of ionic cesium is expected during the discharge

phase. In this case Coulomb collisions with the positive hydrogen ions:

Cs+ +H+x ! H+x + Cs
+; (4.30)

will take place. The cross-section is given by the Coulomb-scattering theory:

� (vcm) =
CCl

v4cm
; (4.31)

where the parameter CCl depends on the mass of the collision partners [Hub06].

4.3.4. Cesium Source Terms

Several kinds of cesium source terms are considered in CsFlow3D during the vac-

uum phase and during the discharge. As described in section 4.2.6, elemental

cesium is injected into the ion source permanently by a temperature-controlled

evaporation oven. Measurements and calculations of the properties of the cesium

�ow from the evaporation oven that is used at the IPP test facilities are speci�ed

in section 5.3 and 6.1.1.

Additionally, other source terms, created by di¤erent physical processes dur-

ing vacuum and plasma phases, contribute to the release of cesium within the

negative-ion source.

Thermal Desorption

The cesium covered surfaces of the ion source walls act as a source of cesium

by thermal desorption. Experimental data of the wall desorption, depending on

the temperature of the speci�c surface, were taken from measurements with the

quartz microbalance done in parallel to the code development. An overview of

this data is given in section 5.1.
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Plasma-induced Desorption

In addition to thermal desorption e¤ects, cesium emission from the surfaces of

the ion source are present during the discharge phases of the ion source:

Physical Sputtering Physical sputtering of cesium by positive hydrogen ions

can create cesium desorption e¤ects. The threshold energy Eth for physical sput-

tering is given by:

Eth =
Eb

 (1� ) ; (4.32)

 =
4m1m2

(m1 +m2)
2 :

The binding energy Eb of pure, metallic cesium multilayers is 0.6 eV (see section

4.1.2). While no metallic cesium is expected to accumulate on the walls of the

ion source and more stable cesium compounds are formed instead, an estimated

binding energy of 1 eV of the cesium multilayers was used. As a result of the

ratio for the mass of the hydrogen nucleus (m1 = 1 amu) in comparison to the

mass of cesium (m2 = 133 amu), physical sputtering is only e¤ective for high

ionic energies [ATG85]. Hence, a high sputtering threshold energy of 34 eV for

protons was determined.

The TRIM code [EB85] was applied to determine the sputtering yields for phys-

ical sputtering and the energy of the backsputtered cesium particles, used in

CsFlow3D. Two main contributions to the physical sputtering processes were

considered in CsFlow3D: sputtering by backstreaming hydrogen ions and sput-

tering by hydrogen ions, created by the discharge itself.

1. Positive H+ and H+2 hydrogen ions are generated by collision processes of

the extracted negative-ion beam with the gas background inside the extrac-

tion system and can enter the ion source chamber through the extraction

apertures after acceleration by both, the extraction and acceleration volt-

ages. The corresponding particle energies depend on the location where

the positive ions are generated inside the extraction system. Typical ion

energies are of the order of several keV.

These backstreaming ions hit the backplate of the negative-ion source and

release cesium from the corresponding surfaces. The distribution of the im-

pinging sputter projectiles was modelled according to the geometry of the

extraction apertures of the MANITU plasma grid. The particle energy and
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the backstreaming-ion current densities in MANITU were taken from an

analysis in [Sch09].

2. Positive ions of the source plasma also contribute to the physical sputtering.

The ion particle �ux in the plasma sheath is given by the following equation:

�i = 0:61nplasma

r
e Te
mion

; (4.33)

where mion is the mass of the impinging ions [LL05]. Additionally, the

in�uence of the magnetic �eld on the plasma was considered by weighing

the plasma density according to the magnetic �ux density on the speci�c

surface area.

Nevertheless, the particle energies gained by acceleration in the plasma

sheath are several orders of magnitude lower than the energy of the back-

streaming ions, even if the ion �ux is signi�cantly higher. The corresponding

particle energies were determined by the di¤erence of the plasma potential

�Plasma(~r) and the potential of the grounded chamber walls.

Results from Langmuir-probe measurements [MDCK+09][Die07][CKF08]

were used to construct a plasma-potential map (see appendix D). A plasma

potential of 50 V in the driver and 40 V at the driver exit has been measured,

falling to 20 V in the extraction region. According to these measurements,

the described physical sputtering process is relevant only in the driver and

at the surface areas close to the driver exit, while the energy of the hydro-

gen ion �ux on the surface areas of the expansion region is either below the

threshold energy for physical sputtering or creates only a sputtering yield

that is negligible small.

Chemical Sputtering Observations after opening the ion source show a signi�-

cant cesium desorption (see �gure 6.12) from wall areas in the expansion region

where physical sputtering by hydrogen ions is ine¤ective according to formula

(4.32). This is possibly an e¤ect of a chemical interaction of plasma particles

with the deposited cesium compounds. Plasma electrons might reduce the ce-

sium in ionic bonds on the walls of the ion source to elemental cesium that is

evaporated from the surface as a consequence of its high vapor pressure.

The chemical state of cesium on the source walls is subject to further research

and no analytical model or experimental data has been available in order to in-

clude the described process in CsFlow3D. A minimum erosion rate was therefore

estimated by empirical observations from the ion-source test facility BATMAN,
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where similar wall-desorption traces have been observed as in the long-pulse test

facility MANITU. BATMAN, however, has a shorter duty cycle with a vacuum

phase of several minutes, followed by a discharge with a pulse duration of several

seconds. For the determination of chemical erosion in CsFlow3D, the minimum

cesium erosion rate by chemical sputtering was estimated by the condition that

cesium, accumulated on the speci�c wall areas during the 4 min of a vacuum

phase, has to be removed during the 5 sec of the following discharge phase in

order to reproduce the observed erosion traces.

It has to be stressed that the implemented surface-chemistry model is a very

rough estimation from empirical observation. This model has to be improved,

when experimental data of the chemical sputtering rates for negative-ion source

relevant conditions are available.

4.3.5. Geometric Representation

A surface mesh of the inner chamber walls of the negative-ion source was imple-

mented in CsFlow3D in order to simulate the transport of cesium between the

individual surface-mesh elements and to compute the accumulation of cesium on

a speci�c position on the chamber walls at a time t.

Several types of surface-mesh elements have to be considered for the transport

calculation:

Emitting Elements

Cesium-emitting surface elements are used to consider the injection of atomic

cesium by the evaporation oven or dispenser into the ion source chamber. The

angular intensity distribution of the corresponding cesium �ux depends strongly

on the geometry of the nozzle system of the particular cesium source.

A separate simulation of the nozzle �ow pro�le (see section 6.1.1) was therefore

done in order to consider the speci�c nozzle geometry of the IPP evaporation

oven.

Loss Elements

The negative-ion source vessel is not a closed system due to the extraction aper-

tures in the plasma grid. While the high potential (kV) during extraction prevents
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Figure 4.17.: Illustration of the re-distribution process of cesium from a surface element

according to a cosine distribution (left hand side) of the re-emitted cesium �ux. The cesium

is transferred between two area elements (right hand side) with area Ai and a surface normal

vector ~ni that are connected by a line-of-sight (LOS).

the positive cesium ions from escaping through the apertures, neutral cesium is

able to leave the ion source during both the vacuum and the plasma phase.

Cesium losses through the extraction apertures are in particular relevant during

the vacuum phases, where cesium is in its neutral state. Circular extraction aper-

tures were implemented according to the MANITU plasma grid as shown in �gure

3.9. The strong electrical �elds during extraction were modelled by a re�ective

boundary for ionic cesium.

Absorbing and Emitting Elements

The surface elements of the ion source walls can absorb and emit cesium. Cesium

can be accumulated on surface elements, but also re-emitted according to the

physical processes described in section 4.3.4. The cesium transport between two

surface-area elementsA1 andA2 with surface-normal vectors ~n1 and ~n2 is governed

by a cosine distribution of the emitted cesium�ux from the chamber walls [Gre02],

as illustrated by �gure 4.17.

The transport process is determined by geometry related e¤ects, such as distance

and relative orientation of the two surface elements, and by the �ow regime that

is subject to change during source operation.
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5. Experimental Results and Input
Parameters

The overview of the properties of cesium that was given in section 4.1 shows

that the high reactivity of cesium results in a strong dependence of the relevant

parameters on the surface conditions and the pressure of the individual system.

Hence, it is necessary to investigate the following phenomena at negative-ion

source relevant pressure and temperature conditions:

� condensation and desorption kinetics from surfaces for di¤erent sample tem-
peratures,

� time evolution of the work function of cesium layers on metal substrates,

� properties and characteristics of cesium �ows from dispenser and evapora-

tion sources.

Dedicated experiments were carried out in order to determine the described pa-

rameters. Data regarding cesium evaporation, distribution and re-distribution,

obtained by these investigations are used as input parameters for CsFlow3D in

order to simulate the dynamics of cesium within the negative-ion source.

5.1. Desorption and Condensation Kinetics

Understanding the temperature-dependent desorption and condensation kinetics

of gaseous cesium on the chamber walls is essential in order to simulate the ce-

sium transport within negative-ion sources. As it was mentioned in section 4.1.2,

literature data and related analytical expressions are limited to the desorption

�ux in a vapor pressure equilibrium of pure cesium and to the kinetics of cesium

monolayers on metals under ultra-high vacuum conditions (10-7 Pa) and sample



84 Chapter 5. Experimental Results and Input Parameters

temperatures of several 1000 �C. No experimental data is available for the desorp-

tion kinetics of cesium at the vacuum (10-3 - 10-4 Pa) and temperatures (Twall =

20/50/150 �C) conditions relevant for negative-ion sources at IPP.

Thus, dedicated desorption experiments were performed under vacuum and sur-

face conditions that are comparable to those in the ion source (see section 4.2.1).

A 3x2 cm2 molybdenum sample was cut from the material that is used for the

plasma grid and mounted on a temperature-controlled sample holder, using a

thermocouple to measure the sample temperature. The sample was exposed to a

cesium �ux from a dispenser and the release of cesium from the metal surface was

measured in-situ by the movable quartz microbalance (see section 4.2.2). Two

experimental procedures were applied for the investigation:

1. the desorption from a cesium-coated metal sample while the sample is

heated,

2. the re�ection of cesium during simultaneous cesium exposition for steady-

state temperature conditions.

5.1.1. Desorption of Cesium

Experimental Procedure

For the experimental investigation of the desorption of cesium, a two-step proce-

dure was applied for cesium exposure and the measurement of cesium desorption

from the heated sample. This arrangement is shown in �gure 5.1.

In the �rst step, elemental cesium from a SAES dispenser was deposited on the

sample with the temperature at Ts = 20 �C, while the microbalance was lo-

cated remote from the sample. According to data from the manufacturer SAES

[CMP04], ultra-pure cesium vapor is released from the dispenser. After ending

cesium deposition from the dispenser, the microbalance was moved to a position a

few centimeters in front of the sample. In the second step, the total accumulated

amount of cesium desorbing from the sample was measured while increasing the

temperature of the sample linearly. A close arrangement of microbalance and

heated sample ensures that the detector covers a high solid angle with respect to

the sample.
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Figure 5.1.: Experimental setup for the investigation of the desorption and condensation
kinetics of cesium layers on metal samples. In the �rst step, the cold sample was exposed to

cesium from a dispenser. In the second step, the sample was heated and the cesium desorption

was measured with the microbalance.

Measurement Error

A non-constant, but systematic measurement error results from the radiative heat

�ux emitted by the heated sample onto the exposed quartz plate. This heat �ux

creates a thermal gradient between the two quartz plates in the microbalance.

The resulting temperature asymmetry creates a frequency di¤erence between the

quartz plates. This asymmetric heating can generate a measurement error that

results in an overestimation of the cesium on the microbalance depending on the

temperature history of the system. The corresponding error exceeds the error by

the frequency measurement of �0.3 monolayers.

Experimental Results

The molybdenum sample was exposed for 20 minutes to a cesium �ux of 2x1013

cm-2sec-1 from the dispenser that was determined by a previous measurement

with the microbalance, while maintaining a constant sample temperature of Ts =

20 �C. This corresponds to a total cesium exposition of approximately 50 mono-

layers.

The cesium-coated molybdenum sample was heated linearly to a temperature of
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Ts = 160 �C while the cesium deposition on the microbalance was measured. A

test under similar conditions, but without previous cesium exposure was done in

order to ensure that the signal on the microbalance is created by the desorption

of cesium. The signal of the microbalance in dependence of the sample temper-

ature with and without a preceding cesium exposition is given in �gure 5.2. An

overestimation of the detected amount of cesium by 5 monolayers was derived by

the measurement without previous cesium exposure of the sample. As described

before, this signal is related to the temperature di¤erence between the quartz

plates by radiative heating.

A total cesium accumulation of 33 - 40 monolayers was detected on the quartz

plate after the heating procedure. The alkaline character of the substance from

the microbalance sensor was identi�ed (ex-situ) by pH indicator. This test was

negative for molybdenum samples without previous cesium exposition.

A low cesium deposition that is only slightly higher than the measurement er-

ror was obtained for sample temperatures up to 50 �C. Heating the sample to

a temperature of Ts > 65 �C results in a strong increase of the cesium accu-

mulation on the microbalance. Forming the derivative of the time dependent

cesium coverage on the microbalance shows that a maximum desorption rate of

3.5 monolayers/min from the sample is obtained at a temperature of Ts = 80 �C,

followed by a saturation of the accumulation at approximately 85 �C. This is a

consequence of the depletion of the cesium that was deposited on the sample.

A second peak appears at a sample temperature of 120 �C, which is, presumably,

created by temperature �uctuations of the quartz plates.

The experiment shows that stable multilayers of cesium can be absorbed by the

metal sample at temperatures below 60 �C for negative-ion source relevant vac-

uum and temperature conditions. These layers get instable at higher sample tem-

peratures and a sample temperature above 65 �C is necessary to release cesium

from the sample surface. This formation of stable cesium multilayer structures

on the sample is consistent with empirical observation of clearly visible cesium

accumulations on the surface areas of the vacuum vessel close to the cesium dis-

penser. No temporal evolution of these structures or re-distribution e¤ects were

observed until their removal by cleaning the vacuum vessel after several weeks of

operation. The formation of a high multilayer coverage on the sample indicates

that the corresponding physical and chemical properties are independent of the

sample material.

These observations cannot be explained by the desorption �ux of cesium for a

vapor pressure equilibrium, as calculated in section 4.1.3. Heating the sample to a
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Figure 5.2.: Signal of the quartz microbalance close to a molybdenum sample, heated to

a temperature of 160 oC, with (blue) and without (black) preceding cesium exposition from a

dispenser. The negative measurement error was derived from the measurement without cesium.

temperature of 50 �C would result in an equilibrium �ux of 2x1015 cm-2 sec-1 from

the hot sample onto the cold chamber walls (Twalls = 20 �C). The corresponding

equilibrium �ux from the walls onto the sample is one order of magnitude lower

and would create an e¤ective �ux of 240 monolayers/min from the hot sample

onto the chamber walls, depleting the accumulated amount of cesium within sev-

eral seconds.

Furthermore, the measured desorption �ux at a temperature of Ts = 85 �C is a

factor of 1000 lower than expected from the equilibrium �ux. The total content

of injected cesium from the dispenser would be lost to the vacuum pumps after

several hours even at Twalls = 20 �C, which is in contrast to the experimental

observation, where cesium traces, distributed according to the position and di-

rection of the cesium source, are clearly visible until opening the vessel.

Thus, the accumulated cesium layers have a signi�cant higher stability than ex-

pected from the surface a¢ nity of pure cesium. This indicates the formation of

cesium compounds. The determination of the corresponding sticking coe¢ cients

for di¤erent wall conditions is necessary to quantify the process of cesium accu-

mulation. Sticking coe¢ cients are essential input parameters for cesium transport

simulations in the negative-ion source.

This kind of desorption measurement is not suitable to resolve this parameter

as a consequence of the measurement error due to temperature variation in the
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Figure 5.3.: Experimental setup for the investigation of the re�ection of cesium from a molyb-
denum sample with a quartz microbalance. Exposure and measurement of cesium that is re-

�ected from the metal sample kept at a constant temperature were done simultaneously.

microbalance, induced by heating the sample. Hence, a steady-state condition

of the temperature of the microbalance was used for the measurement of the ce-

sium re�ection from the metal sample, which avoids the systematic error by the

asymmetric heating process of the two quartz plates.

5.1.2. Re�ection of Cesium

Experimental Procedure

In case of the re�ection experiment, cesium exposure of the sample and the mea-

surement of the desorption �ux from the sample were done in parallel. The

experimental setup is shown in �gure 5.3. Both, the cesium dispenser and the

microbalance were placed in front of the sample in a triangular con�guration

ensuring that no cesium from the dispenser is able to hit the microbalance di-

rectly. Thus, a deposition on the microbalance is caused solely by cesium that

is re�ected from the sample. The systematic measurement error associated with

thermal imbalances can be reduced in case of a re�ection measurement at steady-

state temperature conditions of the sample. In this case it is possible to wait

until the thermal equilibrium of the system is reached prior to the evaporation

of cesium, which is not possible when applying a temperature ramp. Hence, the
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Figure 5.4.: Re�ection of cesium from a molybdenum sample, exposed to a cesium �ux from

a dispenser for a sample temperature of 26 oC, 47 oC and 88 oC.

samples were kept up to 30 min at a constant temperature before cesium was

released in order to establish stable initial conditions. Nevertheless, an error of

�0.3 monolayers is given by the frequency measurement itself.

Results

The re�ection measurements were done consecutively for sample temperatures of

26 �C, 47 �C and 88 �C. Figure 5.4 shows the re�ected cesium from the molyb-

denum surface for a constant cesium �ux and the three sample temperatures.

The start of the cesium accumulation on the microbalance showed a good corre-

lation with the beginning of cesium exposure after enabling the dispenser. The

re�ected cesium �ux was determined by the derivative of the accumulation on

the microbalance.

A strong temperature dependence of the re�ected cesium�ux was observed. Small

re�ection �uxes of (3.5 � 0.3)x1012 cm-2s-1 (26 �C) and (9.0 � 0.4)x1012 cm-2s-1

(47 �C) were detected in the lower temperature range, while a sample temperature

of 88 �C results in a signi�cant higher re�ective �ux of (2.89 � 0.03)x1013 cm-2s-1

(3.85 monolayers/min), comparable to the previously described value of 3.5 mono-

layers/min, obtained by the desorption measurement.
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The stop of the cesium accumulation on the microbalance is for all sample temper-

atures in good correlation with switching-o¤ the cesium �ux from the dispenser

and no signi�cant long-time desorption e¤ects of the accumulated cesium took

place. This is consistent with the desorption measurements where a signi�cant

release of cesium was observed at a sample temperature of above 65 �C, indicating

the temperature regions of stable layer growth (Ts < 65 �C) and desorption (Ts
> 65 �C). Thus, stable cesium multilayers are created for sample temperature

conditions of Ts = 26 �C and 47 �C. This indicates a chemical process, where a

part of the cesium �ux forms cesium compounds, while the remaining cesium is

re-emitted as a result of the high vapor pressure of pure cesium.

Increasing the sample temperature to Ts = 88 �C produces a high desorption of

cesium. This creates a �ux balance of the cesium in�ux from the dispenser with

the desorption out�ux from the sample. Thus, the absence of a desorption �ux

after switching o¤ the cesium dispenser is a consequence of cesium depletion.

The detected cesium out�ux from the sample at Ts = 88 �C is equivalent to the

total in�ux. A determination of the sticking coe¢ cient for cesium on the sample

surface can be made by dividing the desorption �ux by the total �ux onto the

sample. Sticking coe¢ cients of 0.9 (26 �C) and 0.7 (47 �C) were determined by

this method.

5.1.3. Comparison to Thermal Desorption Measurements in
MANITU

The density of atomic cesium by thermal desorption from a hot metal surface can

also be evaluated during long plasma pulses at MANITU. Plasma pulses with

a long duration cause a thermal load on the surfaces of the ion source vessel,

which is temperature stabilized to Twall = 50 �C by a water cooling system.

The molybdenum-coated bias plate is a separate part near the plasma grid (see

�gure 5.5). Thus it has a less e¢ cient cooling system and is heated up to a bias

plate temperature of up to 200 �C during plasma pulses. The emission signal

from atomic cesium close to the bias plate was measured with the OES during

a plasma pulse of 400 sec. In order to eliminate the in�uence of changes in the

electron density, the ratio of Cs 852 nm and the H� line is formed, as described

in section 4.2.4. Figure 5.6 shows the dependence of the signal of the OES on

the temperature of the bias plate that is measured by a thermocouple. Despite

of the interference by the RF-noise, a clear trend of the cesium signal is visible.

While the OES signal shows only small deviations for a bias plate temperature
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Figure 5.5.: Photograph of the bias plate in MANITU. The line-of-sight (LOS) of the spec-
troscopic measurement of the Cs852 line is printed in red.
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Figure 5.6.: Line ratio of Cs 852 nm by the H� line from the OES during a 500 sec plasma

pulse in MANITU (H2, 58 kW, 0.3 Pa) versus the temperature of the bias plate.
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Figure 5.7.: Estimated temperature dependence of the desorption �ux of neutral cesium, ex-
trapolated from measurement with the microbalance. Black line: data as indicated from the

measurements. Red line: extrapolated data to estimate the desorption �ux at higher tempera-

tures.

below 70 �C, a signi�cant increase of the density can be observed at elevated

bias plate temperatures above 80 �C, indicating intensive thermal desorption.

However, the line-of-sight of the OES covers only a limited area of the bias plate,

which might a¤ect the measurement.

5.1.4. Approximation of the Thermal Desorption Rates at
High Temperatures

The temperature dependence of the thermal desorption rate of cesium is a neces-

sary input parameter for the CsFlow3D code. In order to approximate the order

of magnitude of the cesium �ux at high temperatures, a cubic extrapolation of

the measured data that was shown in �gure 5.2 and �gure 5.4 was done. The

cubic �t function was chosen since an exponential extrapolation creates a strong

increase of the cesium �ux at 120 �C that is not compatible with the desorption

characteristics that were measured in MANITU.

The corresponding (rough) estimation of the temperature dependence of the ther-

mal desorption rate is shown in �gure 5.7. Nevertheless, a quadratic extrapolation

would be also plausible, but does not change the order of magnitude.

This is only a �rst estimation and measurements at sample temperatures above
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90 �C are required. However, this is not possible with the given experimental

setup, since the maximum cesium �ux that can be measured is limited by the

amount of cesium, available from the cesium reservoir. Using a high surface

temperature results in a quick depletion of the limited amount of cesium from a

10 mg dispenser. Hence, the use of 100 mg cesium dispensers, as it is described

in section 5.3.2, is planned for future desorption measurements.

5.1.5. Formation of Cesium Compounds

All thermal desorption measurements showed a higher surface a¢ nity compared

to that expected for elemental cesium. This indicates an increase of the surface

binding energy due to the formation of cesium compounds. Especially oxygen

can be dissolved in liquid cesium at a large amount, as described in section 4.1.4.

This is possible by the formation of cesium oxide by reactions with the resid-

ual gas. At the pressure and surface conditions within negative-ion sources, one

monolayer of contaminants is built up after several seconds (see section 4.1.4).

Furthermore, a direct reaction of cesium with the surface oxides of the metal

substrate is possible, forming compounds of the Cs-Metal-O system. Investiga-

tions, done by Desplat et al. [DP80], show that stable cesium multilayers can be

grown on a tungsten-oxide sample at room temperature, forming a 3D crystallite

structure. The desorption of these layers is reported to take place at 77 �C, which

is qualitatively in agreement with the described experimental observations.

Cesium can undergo a very large spectrum of chemical reactions, which have

to be studied in more detail for the conditions of negative-ion sources. Further

investigation of cesium compounds with a mass spectrometer, formed on metal

surfaces, for the conditions within negative-ion sources are in preparation [Fri12].

5.2. Work Function and Surface Properties

The previous measurements showed a deviation from the de- and adsorption ki-

netics of pure cesium for ion-source relevant parameters, indicating that chemical

processes take place.

Additional information can be derived from the work function of a surface, deter-

mining the production rate of negative ions via the surface process (see section

3.1.1).
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Figure 5.8.: Evolution of the work function of a molybdenum sample in a vacuum environment
while enabling and disabling the cesium exposure from a dispenser.

Experimental Procedure

A fresh, polished molybdenum sample at a temperature of 20 �C and a back-

ground pressure of 10�3 Pa was exposed to a cesium �ux from a cesium dispenser

of approximately 3x1013cm-2s-1 while its work function was measured in parallel

utilizing the photoelectric e¤ect (see section 4.2.5). No surface treatment was ap-

plied except of polishing. The dispenser was consecutively enabled and disabled

during the experiment in order to determine the behavior of the work function un-

der the in�uence of the residual gas without cesiation and the e¤ect of a repeated

cesium exposure.

Results

Figure 5.8 shows that the cesium exposition results in the expected decrease of

the work function � of the sample. The characteristic of the curve is, however,

di¤erent from the ideal behavior (see section 4.1.1). Two regions with di¤erent

rates of decrease can be identi�ed: a strong decrease of the work function of the

bare metal (�Mo = 4.27 � 0.08 eV) to a value of � = 2.88 � 0.08 eV was de-

tected within the �rst minute of evaporation, followed by a region, where only a
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Figure 5.9.: Evolution of the work function of a molybdenum sample in a H2/He (80% - 20%)
plasma at 180 W and a pressure of 10 Pa. The cesium exposure of the sample was disabled

after 15 min.

small decrease to a value of � = 2:69�0:08 eV was observed during the following
16 min. An integration of the cesium �ux from the dispenser shows that a total

cesium exposure to 4 monolayers was required in order to obtain a work function

of 2.88 eV during the �rst minute, while 60 - 70 monolayers are required to lower

the work function to 2.69 eV in the next 16 minutes.

After 17 min of cesium exposure, the dispenser was disabled for a time period of

40 min in order to observe the evolution of the reduced work function without any

cesium in�ux. An increase of the work function to a value of � = 3:43� 0:08 eV
was detected during this phase. Re-enabling the cesium �ux a second time re-

sulted in a recovery of the work function to a value of � = 2:84 � 0:08 eV. The
repeated reduction of the work function took again place within the �rst minutes

of cesium exposure - a behavior that is very similar to the observation at the

initial cesiation.

An exposure of the surface to a �ux of hydrogen atoms and ions from a plasma

source is a prerequisite for the surface production of negative ions. Thus, the work

function of a molybdenum surface exposed to a cesium �ux was measured during

a pulsed H2/He-discharge. The �ux of plasma particles creates a heat load onto

the sample that is only weakly connected to the temperature-controlled walls by

the sample holder. A sample temperature between 150 - 200 �C, which is be-
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low the gas temperature during the discharge, is obtained for this con�guration

[Sta05].

The results of this investigation are given in �gure 5.9. These show a quite similar

behavior regarding the decrease of the work function compared to the vacuum

case. The obtained saturation value of �Sat = 2:2 � 0:2 eV, however, is signi�-
cantly lower than the work function without the plasma. Disabling the cesium

exposure results in an increase of the work function to �dec = 2:5� 0:2 eV after
a period of time of 40 min. This increase of the work function is not so strong

than the increase within the vacuum environment.

The measurement of the work function in the ICP source at conditions com-

parable to the vacuum and plasma conditions in negative-ion sources showed a

di¤erent behavior than expected from the available data for ultra-high vacuum

conditions and high surface temperatures, as described in section 4.1.1. A cesium

exposure to 60 - 70 monolayers was required in the ICP experiment to reach a

work function of 2.69 eV which is signi�cantly higher than the literature value

of the work function of a single monolayer of pure cesium of �L = 2.14 eV. This

value has not been obtained by any measurement for the given vacuum and tem-

perature conditions. A reduction of the work function was, however, observed by

the measurement during the pulsed discharge. This indicates a cleaning e¤ect by

the impinging plasma particle �ux.

Both measurements show a degradation process of the work function without a

continuous cesium deposition that is especially pronounced in the measurement

in the vacuum environment. A degradation of a pure cesium metal surface was

also reported in [SWF00], where a similar e¤ect was observed under better vac-

uum conditions of 10-6 Pa. In this experiment, the degradation is explained by

the formation of stable, chemical compounds with a high work function that con-

taminate the surface by increasing the e¤ective work function. The dynamics and

intensity of this degradation are determined by the speci�c reaction rates of the

individual chemical reactions and the work function of the reaction products. A

temperature dependence of this e¤ect is expected and additional measurements

are required in order to evaluate the in�uence of the sample temperature on the

work function. A comparison of the evolution of the work function during cesium

exposure in the vacuum phase for a sample temperature of 20 �C and 150 �C is

in preparation.

Subsequent re-enabling of the cesium �ux from the dispenser regenerates the work

function by adding new layers of cesium. Therefore, a continuous and su¢ ciently

high cesium in�ux onto the sample is required in order to counteract the chemi-
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Figure 5.10.: Time traces of the negative-ion current and the electron-to-ion ratio in BATMAN
for three consecutive days.

cal degradation and to keep the work function permanently at a low level. This

condition is desired for a stable negative-ion production over long periods of time

in particular during long plasma pulses.

Observations of degeneration and regeneration processes, quite similar to the ones

presented in �gure 5.8, were made at the N-NBI test facilities. After a long period

of inactivity (10 hours) such as when the source is operated for the �rst time in

the morning, low negative-ion and high co-extracted electron current densities

are extracted. The reason for this is that the plasma grid has to be supplied with

new cesium in order to balance degradation e¤ects by reaction with the residual

gas. Figure 5.10 shows the dynamics of the source performance in BATMAN for

a period of three consecutive days. The source starts at a low performance and

a series of conditioning pulses is necessary until the level of the previous day is

obtained.

Comparative studies of BATMAN and MANITU indicate an improved condition-

ing time in the latter test facility, which is a consequence to the better residual

gas pressure during the nights. As described in section 3.2.2 Ti getter pumps are

used in BATMAN, while MANITU is equipped with more powerful cryosorption

pumps.

A continuous and su¢ ciently high cesium �ux onto the plasma grid is required to
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regenerate the cesium conditions by counteracting degradation e¤ects. The opti-

mization of the intensity and stability of the cesium in�ux onto the plasma grid

of a negative-ion source requires the development of reliable and stable cesium

sources. Cesium injection into a negative-ion source is more complex than in the

presented lab experiments. This is because only a limited number and locations

of ports for the cesium source are available in negative-ion sources, while a �exible

rearrangement of the components is possible in the lab experiment. Hence, the

cesium �ow from di¤erent cesium sources was measured in the ICP experiment

with the surface ionization detector (see section 4.2.3).

5.3. Flow Measurement

5.3.1. IPP Cesium Evaporation Oven

No measurements of the intensity and long-term stability of the �ow from the

cesium evaporation oven in use at the IPP test facilities have been carried out up

to now. A detailed description of this liquid reservoir based oven is given in sec-

tion 4.2.6. However, these data are highly desirable to evaluate the performance

of the oven and to control the amount of cesium that has been injected into the

ion source. Up to now the extracted negative-ion current density jH� was used as

an indicator for the oven performance and to control the cesium injection. This

method is, of course, not su¢ cient to provide a quantitative monitoring of the

injected cesium �ow.

The �ow measurement is also required in order to evaluate the e¤ect of design

changes and to �nd the best operation parameters. The stability and repro-

ducibility of the cesium injection rate with respect to temperature changes and

the operational time were investigated in this work. Tests were made if it is ad-

vantageous to use a con�guration with additional heating elements on both ends

of the body of the evaporation oven, as described in section 4.2.6. Furthermore,

the measurement serves to determine the in�ux from the cesium oven into the ion

source that is required for the cesium transport simulation. This �ow depends

highly on the geometry and temperature conditions of the oven itself.
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Experimental Procedure

A direct �ow measurement with the surface ionization detector (see section 4.2.3)

was carried out to determine the cesium injection rate from the oven. The cesium

�ow from the nozzle system of the oven was monitored after breaking an ampoule

containing 1000 mg of cesium and for operation times and temperatures similar

to those that are applied for cesium injection at the IPP negative-ion sources (see

section 4.2.6).

Flow monitoring was carried out over a period of 23 days until the amount of

1000 mg of cesium in a single ampoule was depleted. The oven was enabled for a

typical operation period of 8 - 10 hours during the day and was kept inactive at

temperatures between 20 �C and 40 �C during the nights and over the weekends.

The microbalance could not be used to monitor the high cesium �ow (injection

rate of 10 - 100 mg/h) from the oven for a period of several days. This is a

consequence of its limitation regarding the total amount of cesium on the sensor

(see section 4.2.2). The ionization detector does not have this �ow limitation due

to the high temperatures of the tungsten �laments preventing cesium buildup.

Hence, an optimized surface ionization detector design was developed for this

long-term monitoring.

The evaporation oven was attached to one of the side ports of the ICP vessel

(see �gure 4.7) and the ionization detector �lament was placed directly into the

emitted cesium �ow. A detection of the total cesium �ow that is emitted by the

oven is not possible since the solid angle of the expanding cesium �ow exceeds

the dimensions of the surface ionization �lament. The detected ionization current

was therefore integrated over the total monitoring time. The signal was normal-

ized to the total inventory of the cesium evaporation oven of 1000 mg in order to

calibrate the measurement.

A cesium �ow is created by increasing the temperature of the oven components.

As described in chapter 4.2.6, the temperature of the body TBody of the evapora-

tion oven is used for controlling the cesium injection rate and thus is de�ned as

the coldest spot of the oven, determining the total cesium vapor pressure within

the system. The temperature of the other components, such as the ampoules and

the conduction pipe, is set to a temperature of 20 �C above the temperature of the

body. Time traces of SID measurement of the cesium �ow from the evaporation

oven with additional heating elements are presented in the following section.
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Figure 5.11.: Time traces of the SID signal of the cesium �ow from the IPP evaporation oven

(with additional heating) and the corresponding temperature of the oven body for di¤erent

days of the measurement campaign.

Results

No cesium release was detected during the inactive phases when the temperature

of all components was set to 40 �C. Increasing the temperature of the oven body

and the corresponding temperatures of the other components results in a signi�-

cant increase of the cesium �ow.

Figure 5.11 shows the time traces of the detected cesium�ow �SID and the temper-

ature of the body TBody for two di¤erent periods of time: two days after breaking

the cesium ampoule and after two weeks with an operation time of 8 - 10 h each

day.

In the early phase of the evaporation oven test, cesium release and saturation to

a total injection rate of 10 mg/h was obtained at a body temperature of 130 �C.

A reaction time of the cesium �ow to the increase of the body temperature on

the order of 10 - 20 min was detected.

However, the monitoring revealed that the temperature that is required to ob-

tain an equivalent injection rate of 10 mg/h is subject to change during several

days of operation after breaking the ampoule. A body temperature of 190 �C

was necessary after two weeks of operation in order to generate a cesium �ow,

comparable to the one measured at the beginning of the campaign.
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Analytical Calculation of the Flow from an Evaporation Oven

An approximation of the cesium �ow by an analytical calculation, considering the

vapor pressure of pure cesium, was done in order to understand the dependence of

the oven performance on the operation time. The results of the calculations can be

used to interpret the experimental results and to determine the maximum cesium

�ow that is available from the evaporation oven considering ideal conditions.

The evaporation of cesium within the oven creates a vapor pressure equilibrium

that depends on the temperature of the body. Because of the large amount

of elemental cesium (1000 mg), released into the body by breaking the glass-

ampoule, no deviation from the properties of pure cesium is expected right after

the release.

As previously mentioned the body of the oven was chosen to be the coldest spot

of the system and de�nes the total vapor pressure of the system. This vapor

pressure, as given in �gure 4.3, causes a gradient of the cesium pressure between

the body and the vessel of the ion source. The cesium vapor pressure in the

vessel is negligible, compared to the one in the evaporation oven. A cesium �ow

is generated by the pressure gradient that is determined by the conductance of

the connecting pipe with temperature T . This �ow is also strongly dependent on

the �ow regime.

The mean free path length � of cesium atoms in the conduction pipe at a vapor

pressure p = p(TBody) is given by [Bir94]:

� =
1p
2�n

=
kb Tp
2� p

; (5.1)

where the cross-section � for collisions between cesium atoms with thermal veloc-

ity �v(T ) was taken from [FBS98]. The �ow regime is determined by the Knudsen

number Kn:

Kn =
d

�
; (5.2)

where d = 7 mm is the diameter of the conduction pipe. A Knudsen number of

Kn = 0.5 is obtained at Tbody = 165 �C. This puts the �ow in a transition from

a free molecular �ow Kn � 1 to a viscous �ow at Kn = 0.5 at the operation

temperatures.

The following formula was used to calculate the conductance C of a pipe with

e¤ective area A, diameter d and length L:

C =
�

128�

d4

L
p+

1

3
�vA

d

L

1 + 1:60 d
��v
p

1 + 1:98 d
��v
p

�
m3

sec

�
; (5.3)
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for �ows in the transition regime [Jou06]. The viscosity � of cesium was derived

from [VY88]. An approximation of the cesium �ow by �Cs = C(p) p is possible

without accounting for the nozzle and any sticking of cesium to the walls of the

system.

Comparison with the Surface Ionization Measurements

The results of the calculation and measurement were compared to each other.

Figure 5.12 shows the computed and measured cesium �ow from the evaporation

oven in dependence of the body temperature TBody for con�gurations with and

without additional heating (see red arrows in �gure 4.12). According to the cal-

culation, a cesium �ow of several mg/h starts at a body temperature higher than

120 �C, while a negligible cesium �ow of less than 1/200 mg/h is obtained for a

body temperature lower than 40 �C.

A cesium injection rate of 10 mg/h for a body temperature of 145 �C is predicted

by the calculation. This underestimates the injection rate from the SID measure-

ment of 15 - 20 mg/h at a body temperature of 140 - 150 �C, obtained a few days

after breaking the cesium ampoule. As the analytical �ow calculation relies on

the vapor pressure of pure, non-contaminated cesium, it can be concluded that

the maximum performance of the cesium oven has been achieved at this time.

A probable explanation for the underestimation of the measured value is that the

inner surface of the body has a higher temperature than it is measured by the

thermocouple. This could be an e¤ect of a heat �ow from the ampoule housing

and the connection pipe to the body.

The cesium �ow from the oven with the additional �ange heating elements was

compared to the �ow from the oven without this modi�cation. Both measure-

ments were done a few days after breaking the cesium ampoule. A maximum

cesium �ow of only 1 mg/h was obtained in this case even for high body temper-

atures > 200 �C. It is possible to increase the cesium �ow an order of magnitude

by using the additional heating at the ends of the body �ange. An explanation

for the bene�cial e¤ect of the additional heating elements is that both ends of

the oven body form undesired "cold" spots as they are in contact with heat sinks

(see �gure 4.12). If the temperature of the cold spots at the ends of the body

is lower than the body temperature, the total vapor pressure is limited by this

temperature.

The prevention of the formation of "cold" spots at the ends of the body pipe by

the additional heating has signi�cantly improved the performance of the evapo-
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Figure 5.12.: Temperature dependence of the cesium �ow from the evaporation oven, cal-

culated by formula (5.3) in comparison with surface ionization detector measurements. Red:

Flow from the oven with two additional heating system 3 days and 13 days after breaking the

ampoule. Blue: Corresponding �ow from the oven without additional heating system at the

beginning of the campaign.

ration oven. However, there is still the need for improvement of the stability and

reproducibility of the oven, since a time-dependent reduction of the cesium �ow

was detected for both con�gurations.

A signi�cant decrease of the �ow was detected two weeks after breaking the

cesium ampoule and a body temperature of 190 �C was therefore necessary to

release a comparable �ow of 8 mg/h. According to the calculated values in �gure

5.12, this is less than 10 % of the �ow that can be expected from an oven at ideal

operation conditions. A possible explanation for this e¤ect is given in the next

section.

Kinetic E¤ects within the Cesium Evaporation Oven

The measured �ow from the evaporation oven shows a long-term kinetic e¤ect.

It is most probably related to the evaporation dynamics and chemical reactions

within the oven. A drop of elemental cesium, known for its instability to chemi-

cal reactions, is released after breaking the glass-ampoule. The cesium inside the

oven permanently evaporates from the drop, where cesium is stored in a bulk with
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a small surface area. At the operation temperature of the system, the cesium is

re-distributed within the oven until the entire inner surface area of the body pipe

is homogeneously covered with cesium layers. The resulting large surface area is

disadvantageous regarding chemical reactions.

Based on the experimental results from section 5.1 and 5.2, cesium layers are vul-

nerable to chemical contamination under the vacuum conditions of the negative-

ion source. This results in a strong decrease of the vapor pressure. Initially,

very thick layers of pure cesium are formed inside the body because of the large

amount of cesium that is released from the ampoule. After several days of opera-

tion, re-distribution and possible contamination processes may have signi�cantly

changed the properties of cesium inside the evaporation oven.

In order to maintain a constant cesium �ux from the oven, the temperature of

the components has to be increased to compensate for the decrease of the cesium

vapor pressure by chemical reactions. This corresponds to experimental obser-

vations in MANITU. The temperature of the cesium oven has to be increased

continuously during an operational period of the ion source (1 month per am-

poule) in order to obtain an equivalent e¤ect like at the �rst days after breaking

the ampoule [Kra09].

As a consequence, a permanent monitoring of the cesium �ow into the negative-

ion source will be required in order to maintain a given injection rate. This

monitoring signal from the SID can be used as a feedback system for the oven

temperature in order to maintain a constant cesium injection rate. The SID was

successfully applied for the long-term monitoring of the cesium �ow from the

evaporation oven under ion source typical conditions. This has demonstrated

the long-term stability and reliability of the cesium ionization detector that was

designed within the scope of this work.

Nevertheless, the use of the SID system for online monitoring at the IPP test

facilities is still a big step, since there are additional requirements. For example,

the long-term stability of the SID to particle bombardment by the backstreaming

ions and the plasma from the driver needs to be tested.

The vulnerability of the liquid cesium within the evaporation oven to chemical

contamination is inevitable for the given vacuum conditions. This e¤ect is even

more pronounced for the given con�guration of the liquid reservoir-based oven,

since there is no valve system. A valve could stop the contamination of the liquid

cesium by impurities from the test facilities that enter the oven at the inactive

phases of the ion source during the nights and weekends.

A promising approach to solve the encountered de�ciencies by chemical contam-
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ination in general is the use of dispensers, as described in chapter 4.2.7, in place

of cesium ampoules. The cesium in dispensers is stored in chemically stable com-

pounds that are less vulnerable to chemical contamination. It is di¢ cult to use

unprotected dispensers in a plasma environment, since the thermal load by the

discharge interferes with the temperature control by the heating current. Hence,

it is necessary to operate the dispenser in a dispenser oven that protects them

from plasma exposure.

5.3.2. Cesium Dispenser Oven Prototype

A prototype of a cesium oven based on cesium release from a dispenser (see section

4.2.7), instead of the previously used thermal evaporation process, was developed

and tested with the surface ionization detector. Tests of the performance and

stability of this prototype oven are required in order to evaluate the dispenser

oven concept for the cesium injection at the IPP test facilities. Furthermore the

prototype dispenser oven is intended to be used as a �exible, small-scale cesium

source for experiments at the University of Augsburg.

The main objective of this test of a prototype dispenser oven was to investigate,

if it is possible to control the cesium �ow entirely by the dispenser current. This

includes the evaluation of re-distribution e¤ects and the determination of the

reaction time of the oven. Fundamental investigations of the performance and

stability of SAES dispensers at negative-ion source relevant conditions are pre-

sented in [Wim10].

An experimental setup similar to the one for the �ow measurement from the evap-

oration oven was used. However, because of the limited capacity of the available

SAES dispensers of 10 mg, the monitoring time was limited to several hours.

Results

Figure 5.13 shows the results of the surface ionization measurement of the atomic

cesium �ow from the dispenser oven, containing a 10 mg dispenser. Cesium

release was measured 3 min after applying a dispenser current Idisp of 6 A and

a stable cesium �ow of 2 mg/h was measured for a time period of 1.5 h. A

decay time of 40 min was observed after switching o¤ the dispenser, related to

the decrease of the cesium vapor pressure in the oven. After the cesium signal

decreased to a low level below 0.2 mg/h, the dispenser was again heated with

6 A, resulting in an immediate recovery of the signal with a reaction time of
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Figure 5.13.: Surface ionization signal of the atomic cesium beam from a prototype dispenser

oven. A total cesium �ow of 2 mg/h is obtained for a heating current of 6 A.

1 min. The corresponding �ow is comparable to the �ow at the beginning of the

test. Hence, the reaction time of the dispenser oven is by a factor of 10 shorter

in comparison to the liquid reservoir-based oven.

Thus, it is possible to control the cesium �ow entirely by the heating current of the

dispenser with a reaction time (dispenser on) of a few minutes. A stable cesium

signal with no interference by uncontrolled thermal desorption e¤ects during the

test period of several hours was obtained. Further investigations with dispensers

that contain several 100 mg of cesium at a monitoring time similar to the test of

the evaporation oven are, however, required in order to evaluate the advantages

of the dispenser oven in comparison to the liquid reservoir based system.

However, a di¤erent type of commercial cesium dispenser from ALVATEC1 will be

used for these long term studies. This type of dispenser, called ALVASOURCE,

contains a cesium inventory of several 100 mg that can be released at moderate

heating currents below 10 A, while dispensers from SAES with an comparable

amount of cesium require heating currents of 60 A.

Besides tests with a larger reservoir, it will be required to check the operation of

the dispenser-oven during plasma exposition. The SID measurement is restricted

to vacuum operation only, however, it is possible to use the OES to monitor the

852 nm line of atomic cesium. A detailed overview of these test will be presented

in [Fri12] and [Wim10].

1Alvatec Production and Sales GesmbH, Eisenstrasse 62, 9330 Althofen, Austria.
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6. Simulation Results from
CsFlow3D

The experimental results regarding the desorption of cesium layers from heated

metal samples (see section 5.1) and cesium injection rates from the IPP cesium

evaporation oven (see section 5.3) were used as input parameters in the CsFlow3D

code, as described in section 4.3. Calculations were carried out in order to in-

vestigate the following aspects of the cesium transport within the IPP RF-driven

negative-ion source:

� cesium loss through the apertures;

� distribution of the accumulated cesium on the walls of the negative-ion

source;

� intensity and dynamics of the cesium �ux onto the plasma grid during short
and long-pulse operation;

� evaluate new ways of cesium injection for advanced control and homogeneity
of the cesium �ux onto the plasma grid;

The results of these investigations are important input for understanding trans-

port processes and to enhance the performance of the ion source. New ways of

cesium injection can be evaluated by comparing them with the results of Cs-

Flow3D for the present ways of cesium injection and re-distribution.

6.1. Cesium Transport during the Vacuum Phase

The most intense cesium �ux within the negative-ion source is obtained in close

proximity to the nozzle system of the cesium evaporation oven. Knowledge of
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the �ow properties of the cesium �ux from the nozzle system is therefore required

as basic input parameter for any cesium transport simulation. The total cesium

injection rate of the IPP evaporation oven (see section 4.2.6), determined by

surface ionization detection, was used as input parameter for the computation of

the cesium �ow pro�le from the nozzle system.

6.1.1. Nozzle Flow Pro�le

Cesium vapor from the nozzle system of the evaporation oven expands into the

vessel of the negative-ion source and forms a rarefaction �ow. A schematic view

of the cesium oven and the nozzle system is given in �gure 3.9.

Cesium is transported into the ion source by a system of three orthogonal nozzles.

A computation of the axi-symmetric cesium �ux from a single nozzle of this

system was done. The total �ux pro�le was determined by coupling the �ows from

the individual nozzles that point in three directions. The pro�le from a single

nozzle depends on geometric factors. An important quantity is the aperture ratio

a of the nozzle that is de�ned as:

a =
l

d
; (6.1)

where l is the length and d the diameter of the nozzle.

For the special case of an ideal ori�ce, where the aperture ratio is negligible small

a << 1, a cosine-distributed cesium �ow pro�le is obtained [Küg09]. A non-

negligible aperture ratio of a = 1 is obtained for the nozzle geometry of the IPP

evaporation oven. Thus, a certain amount of cesium particles are adsorbed on

the hot walls within the nozzle and re-distributed, causing a backscattering of

cesium particles into the conduction pipe. This results in an e¤ective narrowing

of the �ow pro�le and a reduction of the opening angle.

The cesium �ux pro�le for the nozzle geometry of the IPP cesium evaporation

oven was determined by a DSMC simulation [Bir94], considering a total cesium

�ux of 10 mg/h (see section 5.3) as input parameter. A projection and statistical

sampling of the particle parameters from the Monte Carlo simulation on a com-

putational grid was done in order to resolve the pro�le of the cesium �ow.

A cesium �ux at free molecular �ow conditions is established within the nozzle,

which is a consequence of the small dimension of the nozzle aperture with respect

to the mean free path of cesium atoms (cm range) in the system.

The result of the computation of the axi-symmetric �ow from a single nozzle is

given in �gure 6.1. In comparison to the cosine-distributed �ow pro�le (blue)
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Figure 6.1.: Simulation results of the radial (left hand side) and angular (right hand side)
�ux density pro�le through a single nozzle of the evaporation oven, in use at the IPP. A total

injection rate of 10 mg/h is considered for evaporation with three nozzles.

from an ideal ori�ce, the computed pro�le (red) is signi�cantly narrowed. Ce-

sium gas leaves the nozzles at a maximum �ux density of 1.2x1017 cm-2s-1 that is

signi�cantly reduced in the �rst millimeters of the rarefaction process by the ex-

pansion into the chamber of the ion source. The computed, narrowed �ow pro�le

was used as an initial parameter for the simulation of the injection of cesium into

the negative-ion source by CsFlow3D.

6.1.2. Cesium Distribution

Cesium Loss

An important aspect regarding the dynamics of cesium within the negative-ion

source test facilities is the loss of cesium. A multi-aperture extraction system

that is transparent to �ows of neutral particles is used for the beam formation

process. Positively charge particles, such as cesium ions, are retained inside the

ion source during extraction. However, neutral cesium is able to leave the ion

source and either condenses on the electrodes of the extraction system or expands

into the vacuum tank system of the test facilities. This vacuum chamber has a

large volume and surface area in comparison to the negative ion-source vessel,

acting as a sink for cesium.

The corresponding chamber that is planned for the ITER neutral beam injector
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will even have signi�cantly larger dimensions. Furthermore, this system will have

additional electrodes for the 1 MV acceleration (see section 2.3.5). Cesium, lost

through the apertures, is potentially harmful for the voltage holding capability

due to covering the insulator and enhancing secondary electron emission as seen

in MANITU.

A calculation of the cesium losses by using kinetic theory and the vapor pressure

of elemental cesium leads to obvious discrepancies with experimental observa-

tions. The approximating of the cesium losses through the apertures based on

the vapor pressure equilibrium (see �gure 4.3) results in a aperture loss �ux of

1.5x1014 cm�2s�1 for a wall temperature of 20 �C and 2.4x1015 cm�2s�1 for a

temperature of 50 �C. Considering the transparent area of MANITU of 200 cm2,

cesium losses of 23 mg/h and 368 mg/h are expected, respectively. Both values

exceed the typical injection rate from the evaporation oven of 10 mg/h.

The corresponding predictions are in disagreement with experimental observa-

tions of signi�cant cesium retention within the ion source. A cesium e¤ect on the

source performance is noticeable even after several days without cesium injection.

Experimental investigations of cesium desorption with a microbalance (see sec-

tion 5.1) showed a higher surface a¢ nity than expected for elemental cesium.

This results in the formation of multiple layers of cesium-containing compounds

at the temperature conditions of the chamber walls of the negative-ion source.

Thus, the vapor pressure of elemental cesium is not adequate to predict the ce-

sium losses through the apertures.

Therefore, the CsFlow3D code was used to determine the cesium losses for a re-

alistic cesium surface a¢ nity. Experimental data of the temperature dependent

sticking coe¢ cient s (see section 5.1) and a standard cesium injection of 10 mg/h

(see section 5.3) were considered in the calculation. According to the results from

the thermal desorption experiment, only a small amount of cesium is accumulated

on samples for temperatures higher than 90 �C. Hence, the amount of cesium on

the hot plasma grid (Tpg = 150 �C) is very small in comparison to the cesium

accumulation on the cold (Twalls = 26 - 47 �C) chamber walls. The sticking s of

cesium on the plasma grid was approximated with s = 0.

Figure 6.2 shows the simulated cesium losses during a vacuum phase of MANITU

considering wall sticking coe¢ cient of s = 1 - 10�3. The cesium loss �ux �loss
was found to be inversely proportional to the sticking coe¢ cient s of cesium on

the chamber walls.

In case of a high sticking coe¢ cient of s = 1:0, the total cesium �ux from the

evaporation oven is absorbed from the surface areas, where the particles hit the
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Figure 6.2.: a) Simulated loss �ux of cesium vapor through the extraction system of MAN-

ITU during the vacuum phase in dependence of the sticking coe¢ cient on the chamber walls,

representing di¤erent temperature conditions using a logarithmic scale. b) Loss �ux at a linear

scale for the experimentally determined sticking coe¢ cient.

ion source walls. The cesium distribution is in this case determined by the pro�le

of the cesium �ux from the evaporation oven. The loss �ux is related to the

fraction of the �ow pro�le that forms a direct line-of-sight with the transparent

areas of the plasma grid. As the nozzles of the evaporation oven are directed

onto the walls of the expansion chamber, there is only a small loss �ux of �loss =

0.1 mg/h.

Decreasing the sticking coe¢ cient to sexp = 0:7, as it was measured by the mi-

crobalance for a wall temperature of Twall = 47 �C, results in a loss �ux of �loss
= 0.25 mg/h. This is signi�cantly lower than the loss calculated for the vapor

pressure equilibrium. It shows that the experimentally derived sticking coe¢ cient

is high enough to retain a high fraction of the injected 10 mg/h in the ion source.

The numerical calculations indicate that multiple layers of cesium are absorbed

by the walls of the ion source. This accumulation of large amounts of cesium

is in agreement with experimental observations of the presence of large cesium

reservoirs on the inner walls of BATMAN and MANITU (see for �gure 6.5 and

6.12) after an operation period. These periods can last up to several months.

A further decrease of the sticking coe¢ cient to a value of s = 0:1 causes an in-

crease of the simulated cesium loss rate up to 2 mg/h. The saturation of the loss
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rate to the total injection rate of 10 mg/h takes place at a sticking coe¢ cients of

s = 10�3. In the latter case, the injected amount of cesium cannot be balanced

any more by the surface absorption. The cesium loss rate is then determined by

the equilibrium �ow according to the vapor pressure kinetics.

The computation on the basis of the experimentally determined sticking coe¢ -

cients shows signi�cantly lower cesium losses than expected from the consider-

ation of the vapor pressure of pure cesium, where the loss of several mg/h of

cesium would take place even for low wall temperatures of Twall = 26 �C. This

reduced loss rate is bene�cial for the voltage holding capability of the electrodes

in the accelerator system for ITER.

Hence, the absorption of cesium on the chamber walls is the dominant loss mech-

anism at ion source relevant vacuum and temperature conditions and only a small

amount of cesium is lost through the apertures. Nevertheless, the cesium absorp-

tion in large reservoirs on the source walls close to the oven prevents cesium from

reaching the plasma grid. A permanent and intensive cesium �ux onto the plasma

grid is, however, required to keep the work function at low levels by balancing

the formation of cesium compounds.

The location and extent of the cesium reservoirs, generated during the plasma-o¤

phases, has an e¤ect on the cesium conditions during the discharge. Plasma-

generated cesium release (see section 4.3.4) from the chamber walls creates ad-

ditional cesium sources during the discharge phases. The distribution of these

cesium reservoirs on the source walls that are formed during the vacuum phases

is therefore an important aspect for the properties of the cesiums �ow during the

discharge.

Cesium Wall Accumulation

Figure 6.3 shows the simulated cesium accumulation rate during a vacuum phase

of MANITU. Wall temperatures of Twall = 47 �C (s = 0.7) and Tpg = 150 �C (s

= 0) were considered in CsFlow3D for the standard cesium injection rate. The

simulation includes the adsorption and re-distribution from the source walls by

thermal evaporation. Especially intense cesium accumulations are formed on the

surfaces close to the nozzle system of the evaporation oven. Three maxima with

an accumulation rate of 5x1013 cm�2 s�1 were determined to appear on the back-

plate. This is an e¤ect of the orientation of the cesium �ow from the nozzles of

the evaporation oven that points on the bottom- and sidewalls.

Figure 6.4 shows line plots of the accumulation rate on the side- and backplate



6.1. Cesium Transport during the Vacuum Phase 113

100
50
0

50
100

2.00E11
4.00E11
8.00E11
1.60E12
3.20E12
6.40E12
1.28E13
2.56E13
5.12E13

x 
[m

m
]

Bottom
100 50 0 50 100

240

180

120

60

0

60

120

180

240

y 
[m

m
]

x [mm]

Side Backplate

120 80 40 0 40 80 120
100

50

0

50

100

z [mm]

x 
[m

m
]

Accumulation
Rate of
Cesium
[cm2 s1]

s = 0.7

1013

1011

1012

Top

Figure 6.3.: Computed accumulation rate of cesium in MANITU during the vacuum phase

for a sticking coe¢ cient of s = 0:7, corresponding to a wall temperature of 47 oC, and a total

cesium in�ux of 10 mg/h.



114 Chapter 6. Simulation Results from CsFlow3D

240 160 80 0 80 160 2401011

1012

1013

  0.9 (26 °C)
  0.7 (47 °C)
  0.5
  0.3
  0.1

Ce
si

um
 a

cc
um

ul
at

io
n 

ra
te

[c
m

2
s1

]

y [mm]

1011

1012

1013

1014

Driver

b) Lower Wall                    Upper Wall

a) Backplate

Figure 6.4.: Line plots of the simulated cesium accumulation rate on the backplate a) and on

the upper and lower walls b) of MANITU along the white line in �gure 6.3 for di¤erent wall

sticking coe¢ cients.

of the ion source along the highlighted dashed lines in �gure 6.3. Peaks of the

accumulation rate with respect to the center of the �ow from the speci�c nozzle

appear on the backplate and the upper wall.

As a result of the surface a¢ nity of the cesium, the accumulation pattern is de-

termined by both the pro�le of the nozzle �ux and the re-distribution of cesium

that is not adsorbed on the walls. In case of a wall sticking coe¢ cient that is

higher than 0.7, as determined for a wall temperature below 47 �C, the cesium

distribution within the ion source is predominantly in�uenced by the �ow pro�le

from the nozzle system and inhomogeneous accumulation pro�les are created.

The e¤ect of intensive cesium re-distribution becomes the most important factor
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at sticking coe¢ cients below 0.1 and the �ow pro�le from the evaporation oven

is negligible.

This transition can be accomplished by raising the surface temperatures or by

reducing the amount of surface impurities. In case of a very low sticking coe¢ -

cient, the cesium accumulation rate is more equally distributed within the source

chamber. Surface areas that are at remote locations regarding the position of the

cesium oven are supplied with cesium at the expense of the surface areas in the

vicinity of the evaporation oven.

The results of the simulation are compared to the desorption �ux of elemental

cesium in the vapor pressure equilibrium in order to clarify the in�uence of the

increased surface a¢ nity. A desorption �ux of 2x1015 cm�2 s�1 is expected from

the vapor pressure at Twall = 47 �C (see �gure 4.3). This �ux is by a factor of 40

higher than the total deposition rate of 7x1013 cm�2 s�1 in close proximity to the

oven. In this case, the in�ux from the oven is compensated by thermal desorption

processes and the geometry of the oven is insigni�cant. This results in an evenly

distributed cesium �ux onto all walls that is determined by the equilibrium of the

cesium vapor pressure and the losses through the extraction system.

Qualitative Comparison with Experimental Results

The presented results from CsFlow3D are qualitatively supported by the investi-

gation of the walls of the disassembled ion source of MANITU after the evapo-

ration of 1000 mg of cesium during a source operation period of 1 month. Two

di¤erent types of clearly visible, stable cesium compound layers were identi�ed

ex-situ:

1. Black, blue-shimmering layers were observed on the copper walls.

2. White layers were observed on the molybdenum-coated backplate.

A photograph of these layers is given in �gure 6.5. Several tests with a pH indica-

tor showed the alkaline character of both substances. It was possible to identify

both compounds from the table 4.1 by their color:

� The white substance was identi�ed as hygroscopic cesium hydroxide CsOH
and is formed by a reaction of Cs with H2O at atmospheric pressure after

breaking the vacuum to open the ion source
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Figure 6.5.: Raw (upper) and high contrast (lower) photograph of the backplate

(molybdenum-coated) and the upper wall (copper) of the ion source of MANITU after the

evaporation of 1000 mg of cesium. The nozzle system of the evaporation oven is located at the

marked port.
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� The black substance was identi�ed as cesium oxycuprate CsCuO2 that can

be formed by a reaction of Cs with H2O and O2 in combination with Cu

from the walls of the ion source.

The minimum thickness of these layers can be estimated by the Lambert law

[BS04]. This law states that a layer is visible if its thickness � exceeds �min � �
4
,

where � is within the range of the wavelength of visible light. This shows that

the visible cesium layers must exceed a thickness of �min = 200 nm = 400 ml. A

layer thickness of several thousand monolayers of cesium compounds is expected

as a consequence of the high visibility of the layer structure. Nevertheless, this

ex-situ analysis does not allow conclusions to be drawn on the chemical state of

cesium before the vacuum of the source was broken.

The distance from the nozzle of the evaporation oven to the surface of the upper

wall of the ion source is very short (< 3 cm). Therefore, the broadening of the

�ux pro�le by collisions with background particles during the plasma phase is not

signi�cant. Hence, the deposition pro�les onto this speci�c area are very similar

during the plasma and the vacuum phase of source operation.

Figure 6.6 shows the integrated cesium accumulation on the upper wall, predicted

by CsFlow3D, after the evaporation of 1000 mg of cesium using the sticking

coe¢ cient of s = 0.7, 0.1 and 0.05. The computed pro�le for a sticking coe¢ cient

of s = 0.7 shows the formation of two lobe-shaped cesium deposition structures

with a maximum layer thickness of 7 �m at the center of each lobe. These

correspond to the directions of the nozzles of the evaporation oven. The structures

are less pronounced for a sticking coe¢ cient of s = 0:1. This results in a maximum

accumulation of 1.7 �m and a more homogeneous distribution of the accumulated

cesium compounds over the entire upper wall. A simulation with s = 0:05 shows

an evenly distributed deposition with layer thickness of � < 500 nm that would

be barely visible in the experiment.

The simulated deposition pro�le using the experimentally determined sticking

coe¢ cient for a wall temperature of 47 �C is in good qualitative agreement with

the observed cesium accumulations on the upper wall of the negative-ion source.

This gives additional experimental evidence regarding the increased a¢ nity of

cesium on the walls of the ion source. Large quantities of cesium are stored in

stable reservoirs on the ion source walls. These are inactive during the vacuum

phase for the given temperature conditions. A recycling process of cesium from

speci�c surface areas takes place, however, during the discharge. Cesium that is

not bonded to the chamber walls can contribute to the �ux onto the plasma grid.

This process will be discussed in the next section.
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6.1.3. Cesium Flux onto Plasma Grid

The work function measurements during vacuum and plasma phases (see section

5.2) indicate that a permanent �ux of elemental cesium onto the plasma grid is

required in order to maintain a stable negative-ion production. This cesium �ux

onto the plasma grid was calculated for a wall temperatures of 26 �C and 47 �C

and for the standard cesium injection rate. Similar to the previous simulations,

the sticking of cesium on the plasma grid (Tpg = 150 �C) was approximated by

s = 0. Figure 6.7 shows the predicted cesium �ux onto the plasma grid for the

speci�ed source wall temperatures.

A typical cesium �ux of the order of 1012 cm�2 s�1 was calculated for the given

sticking coe¢ cients. This is by a factor of ten lower than the �ux from the

dispenser in the experiments to determine the work function of a cesium coated

metal sample (see section 5.2). Thus, a less e¢ cient regeneration of the plasma

grid work function is expected during the vacuum phases of ion source operation

than observed in the laboratory experiment.

The results of the calculation show in both cases an inhomogeneity regarding

the cesium �ux pro�le and the �ux onto the upper area of the plasma grid is by

a factor of three more intense than the one onto the lower area. This e¤ect is

caused by the position of the nozzle system with respect to the plasma grid as a

consequence of the following e¤ects:

� The pro�le of the direct �ux of cesium from the nozzle system onto the

plasma grid is more intense on the upper regions, which is as a result of the

closer proximity to the nozzles of the evaporation oven. Hence, the circular

�ow pattern from the evaporation nozzles is especially pronounced for a

high sticking coe¢ cient of 0.9.

� The cesium �ux onto the plasma grid is partly composed of cesium coming
from the walls of the ion source. The intensity of the re-distributed �ux

is related to the number of wall interaction during the transport process.

Reducing the sticking coe¢ cient to 0.7 and below results in an enhancement

of this e¤ect.

Cesium transport from the nozzle system to remote areas, such as the lower part

of the plasma grid, requires more wall interactions than it is required for the

transport to areas in closer proximity to the nozzle. The increased number of

wall re�ections to reach distant areas results in a higher absorption of cesium on
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Figure 6.7.: Contour plots of the cesium �ux on the plasma grid of MANITU during a vacuum
phase, considering a wall sticking coe¢ cient of s = 0.9 and s = 0.7 for a cesium injection rate

of 10 mg/h.

wall surfaces. Thus, more cesium is lost during transport to the lower areas of

the plasma grid than it is the case for the transport to the upper areas.

The cesium �ux on the plasma grid can be increased by lowering the sticking

coe¢ cients of the source walls. Decreasing the sticking coe¢ cient from s = 0:9

to s = 0:7, corresponding to an increase of the wall temperature from 26 �C

to 47 �C, results in a signi�cant increase by a factor of two of the cesium �ux

onto the plasma grid. The cesium �ux onto the plasma grid in case of a wall

temperature that is lower than 47 �C is determined by both, the �ux pro�le of

the evaporation of and re-distribution e¤ects from the source walls.

According to the measurement of the work function dynamics, the increase of

the cesium �ux at a higher wall temperature is expected to be more e¢ cient to

regenerate a fresh cesium layer on the plasma grid. This is required to counteract

the observed deterioration by contamination processes. A bene�cial e¤ect on the

source performance is therefore expected in case of a wall temperature of 47 �C.

A limitation of the total cesium �ux onto the plasma grid is created by losses

through the apertures and by the absorption of cesium on the chamber walls,
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phase for a sticking coe¢ cient on the chamber walls of s = 0.1 and s = 0.01, considering a total

injection rate of 10 mg/h.

which was the dominant factor in the previous computations. Hence, the cesium

�ux onto the plasma grid was investigated for the case that cesium re-distribution

from the source walls dominates the �ux pro�le of the cesium oven. A further

reduction of the sticking coe¢ cient to s � 0.7 is required to create this physical

situation. This can be either related to changes of the chemical conditions of

the surfaces that may take place during the operational period of the source or

related to an increase of the wall temperature to Twall � 50 �C.

The cesium �ux onto the plasma grid was therefore computed for signi�cantly

lower wall sticking coe¢ cients of s = 0:1 and s = 0:01. An experimental de-

termination of the corresponding wall temperature was limited by the accuracy

of the microbalance. A sticking coe¢ cient of 0.1 is approximately reached at

wall temperatures higher than 70 �C, while a sticking coe¢ cient of 0.01 requires

probably a wall temperatures above 90 �C. Results of the calculations for the

sticking coe¢ cients s = 0:1 and s = 0:01 are given in �gure 6.8.

Similar to the dependence of the cesium loss rate, the cesium �ux onto the
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plasma grid during the vacuum phase is inversely proportional to the sticking

coe¢ cient. A signi�cantly higher total cesium �ux of the order of 1013 cm�2 s�1

that is predominantly created by the �ux contribution from the walls is predicted

by the transport simulation for a low sticking coe¢ cient of 0.1. In this case

less cesium is retained on the source walls. The obtained �ux is comparable

to the one that was used for the experiments to reduce the work function of a

cesium-coated sample. Thus, a similar time-dependence and absolute value of

the work function is expected during the vacuum phases of ion source operation.

Lowering the sticking coe¢ cient has also an e¤ect on the �ux distribution. Flux

inhomogeneities caused by the position of the nozzle system are compensated by

frequent wall re�ections. These create an evenly distributed cesium �ux on the

chamber walls and the cesium �ux onto the plasma grid becomes independent of

the source geometry or position of the oven.

A decrease of the sticking coe¢ cient to s = 0:01 results in a further increase of

the cesium �ux onto the plasma grid by a factor of four and a signi�cant improve-

ment of the relative homogeneity. The dominant cesium loss term becomes the

cesium out�ux through the aperture system. At the standard injection rate, the

available total �ux onto the plasma grid is thereby limited to 6.5x1013 cm�2 s�1

for negligible losses on the source walls.

6.1.4. Comparison to Experimental Results

The transport computation predicts a factor of two more intense cesium �ux onto

the plasma grid during the vacuum phase by increasing the wall temperature from

26 �C to 47 �C, considering the sticking coe¢ cients described in section 5.1 for

the surface a¢ nity. A positive e¤ect of increasing the wall temperature on the

source performance was observed in BATMAN (see section 3.2.2).

A continuous increase of the source performance by the number of (short) plasma

pulses is observed after the �rst day of cesium injection until a saturation takes

place. Figure 6.9 shows the development of the extracted negative-ion current

after breaking the cesium ampoule in the oven for a wall temperature of Twall =

20 �C and Twall = 50 �C. Periodic �uctuations of the extracted current density

are related to the development of the source performance during the individual

days of operation, as explained in section 5.2.

The trend of the source performance over several days shows that the overall

time for the source to be conditioned is reduced when the wall temperature is
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Figure 6.9.: Evolution of the extracted negative-ion current in BATMAN for conditioning

with source wall temperature of 20 oC (blue) and an elevated temperature of 50 oC (red).

increased. A higher performance is achieved after a shorter time using a wall

temperature of 50 �C for the given shots. It is, however, in some cases possible

to obtain an equivalent source performance also at 20 �C, taking into account a

considerably longer conditioning time, which may be not available.

The CsFlow3D code predicts a further increase of the cesium �ux onto the plasma

grid by using wall temperatures of Twall > 70 �C that correspond to sticking co-

e¢ cients below 0.1. This might result in a further reduction of the conditioning

time, but at the expense of higher cesium losses through the apertures, which

may be disadvantageous for the voltage holding capabilities of the source.

The formation of thermally-stable cesium reservoirs on the source walls results in

a limitation of the e¤ective cesium �ux onto the plasma grid during the vacuum

phase. These reservoirs can be activated by several processes (see section 4.3.4)

during the discharge phases. This results in the generation of additional cesium

sources on speci�c surfaces that are investigated in the next section. The dis-

tribution of the cesium reservoirs, computed in the vacuum phase, is used as an

initial parameter for the simulation of the cesium transport during the discharge

phase.



124 Chapter 6. Simulation Results from CsFlow3D

0 50 100 150 200 250 300 350 4000.0

1.50

1.75

2.00

2.25

2.50

0
5
10
15
20
25
30
35
40

Li
ne

 R
at

io
 C

s 8
52

/H
β

IH

Ie

I [
A]

t [sec]
Figure 6.10.: Extracted electron and negative-ion current during a 400 sec plasma pulse (H2,
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6.2. Cesium Transport during the Discharge Phase

The cesium re-distribution during the discharge is di¤erent from that during the

preceding vacuum phase. Besides the generation of additional cesium sources,

the transport process of cesium in the plasma is signi�cantly changed (see section

4.3.2). Collisions with background particles change the properties of the cesium

�ows that are emitted by the surfaces and the evaporation oven. Ionizing colli-

sions with plasma electrons generate cesium ions that are a¤ected by electric and

magnetic �eld within the ion source.

Negative hydrogen ions are produced from neutral and ionic hydrogen particles

that are converted on the plasma grid surface in a plasma environment. Op-

erating the negative-ion source at ITER-relevant parameters requires a cesium

�ux onto the plasma grid that is homogeneous in space and stable in time. The

required time-stability can be satis�ed easily during short pulses of up to several

seconds, but long pulses of up to one hour at a relevant source performance need

a more advanced cesium control mechanism.

Figure 6.10 shows the measured electron Ie and ion IH� currents during a 400 sec

pulse in MANITU together with the corresponding neutral cesium signal from the

optical emission spectroscopy, measured in 2.5 cm distance parallel to the plasma



6.2. Cesium Transport during the Discharge Phase 125

grid. The time trace of the extracted negative-ion current saturates after 200 sec

and is then stable during the remaining pulse duration, despite of the �uctuation

of the electron current and the density of atomic cesium. This behavior indicates

a saturation of the work function and the corresponding negative-ion production

during intensive cesium exposition of the plasma gird. A similar behavior at an

equivalent time scale was observed during the work function measurement of a

molybdenum sample that is exposed to a cesium �ux during the discharge, as

described in section 5.2.

Furthermore, this pulse demonstrates the following e¤ect: the increase of the

electron current after a pulse duration of 100 sec is correlated with the Cs852

line. As long as the cesium signal rises, the electron current is lower than the

negative-ion current. As soon as the cesium signal saturates or starts to decline,

the co-extracted electron current increases [KFF+09]. The e¤ective length of the

pulse is limited until the electron-generated thermal loads on the extraction grid

exceed the operational limits of the extraction system (see section 3.2.1). The

correlation between the co-extracted electron current and the cesium conditions

is observed during the majority of pulses, but is not mandatory for every pulse. It

is possibly a physical e¤ect in the plasma volume that is generated by the altered

cesium conditions on the plasma grid.

The �rst step to understand these e¤ects are simulations of the cesium transport

within the negative-ion source. These are required to understand the dynamics

of the cesium signal and to correlate it with measurements of the extracted ion

and co-extracted electron current. The cesium transport during the discharge,

considering a preceding vacuum phase as initial condition, was computed with

the CsFlow3D code.

6.2.1. Cesium Re-distribution during the Discharge

Cesium Erosion and Re-Distribution within the Expansion Chamber

A simulation of the cesium re-distribution within the negative-ion source was

done for a plasma pulse duration of 20 sec after a vacuum phase of 240 sec, which

are typical conditioning parameters in MANITU [Kra09]. The simulation was

done for a constant cesium evaporation rate of 10 mg/h and a wall temperature

of 47 �C (s = 0.7) during both, the preceding vacuum and the discharge phase.

Similar to the previous computation, negligible cesium sticking was assumed on

the plasma grid (TPG = 150 �C). Input parameters regarding the desorption of
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cesium by the interaction with the discharge are explained in section 4.3.4. For

the sake of simplicity, the simulation of the cesium dynamics during the plasma

phase is always done for enabled extraction voltage, considering the e¤ect of back-

streaming ions.

Figure 6.11 shows the simulated cesium accumulation on the walls of MANITU

after the discharge. Signi�cant removal of cesium, deposited during the preceding

vacuum phase (see �gure 6.3), from the backplate and the side walls of the ion

source is predicted by the simulation. This is an e¤ect of cesium sputtering by

plasma particles and highly energetic backstreaming ions, as described in section

4.3.4.

The cesium is transported from surface areas that are exposed to a high ion �ux

onto areas, where the cesium removal is less e¤ective. Thus, erosion zones are

formed close to the driver exit, where there is a high plasma density and on the

backplate as a result of the backstreaming ion �ux. Deposition zones are formed

on the surfaces in the extraction region, where there is a lower plasma density

and where there are no backstreaming ions. Figure 6.14 b) shows the computed

cesium deposition on the bias plate after a 20 sec plasma pulse for a previous

vacuum phase of 240 sec.

The separation of the inner surface areas of the ion source in erosion and depo-

sition zones is a result of the variation of the plasma density across the source,

which is an e¤ect of the geometric distance to the driver and the presence of the

magnetic �lter �eld. This creates an e¤ective route for the transport of cesium.

Cesium is released from surface areas that have intense contact with the plasma

(side walls) or backstreaming ions (backplate). Deposition takes then place in

the extraction region where there is no activation of the reservoirs.

The simulation predicts a depletion of the cesium reservoirs at the back- and side

walls of the ion source, close to the driver. Backstreaming ions contribute to the

erosion at the backplate of the ion source. Their current density on the backplate

is determined by the projection of the aperture pattern of the plasma grid. The

surface area close to the cesium oven where the highest cesium deposition rate is

predicted by the codes is, however, not included in this projection. The erosion

pro�les on the side walls of the source chamber are created due to the wall pro-

jection of the plasma that expands from the driver into the ion source vessel.

Nevertheless, large quantities of cesium cannot be activated by the plasma and

are lost for future use. This process forms an e¤ective sink for the cesium trans-

port during the vacuum and discharge phases of the ion source on areas with low

plasma exposition. Examples for such areas are the top wall and especially the
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Figure 6.11.: Simulated cesium distribution on the walls of MANITU after a vacuum phase

of 240 sec followed by a plasma phase with a pulse duration of 20 sec at a constant cesium

injection rate of 10 mg/h.
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Figure 6.12.: Photograph of the erosion and deposition traces of cesium in MANITU after an

operational period where 3 ampoules of cesium were injected. The walls of the ion source were

heated to 50 oC during source operation.
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area on the backplate close to the oven. These inactive reservoirs stay passive

during the total operation time of the ion source until their removal by the clean-

ing of the disassembled source chamber. This enhances unnecessarily the cesium

consumption of the ion source.

Comparison with Experimental Results

A qualitative comparison of the simulated cesium traces with photographs of the

inner walls of the chamber after opening the ion source at the end of an opera-

tion period was done. The cesium deposition in MANITU after a long operation

period with a high total cesium injection of 3000 mg is shown in �gure 6.12. This

particular operation period was used in order to demonstrate the e¤ects of cesium

erosion during the plasma phases on the distribution within the source chamber.

The circular areas at the driver exit are formed by drops of cesium hydroxide

solution that �ow to the bottom of the ion source.

Intensive traces of cesium erosion were detected on the backplate and the side

walls of the source vessel. Furthermore, the rectangular erosion pattern on the

molybdenum-coated backplate corresponds to the projection of the extraction

area, which is an e¤ect of the backstreaming ions. Thus, the simulation results

are in qualitative agreement with the experimental observation. It was possible

to identify the di¤erent erosion e¤ects by comparing the observations with the

results from the transport simulation.

A quantitative determination of the cesium accumulation on the lower wall of the

ion source chamber was done by placing a metal sample on the bottom wall (see

�gure 6.11) of MANITU. The Rutherford backscattering method (RBS) that is

described in [Fel86] was used to measure the amount of cesium, accumulated on

the sample during ion source operation. A total amount of 1000 mg cesium was

injected into the ion source for this particular experiment. The RBS measure-

ment detected a cesium surface density of 1.3x1017 cm�2 on the sample [Hop09].

Removing the cesium-coated sample out of MANITU required the sample, how-

ever, to be exposed to the atmosphere.

The cesium accumulation on the bottom wall was computed for a cesium injec-

tion of 10 mg/h and an integrated evaporation time of 100 h in order to validate

the result from CsFlow3D by the RBS measurement. A simpli�ed computation

considering alternating vacuum and plasma phases of 240/20 sec and a wall tem-

perature of 47 �C was done. The code predicts a total cesium accumulation of

2x1017 cm�2 on the bottom wall. This is a good agreement considering that
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the amount of cesium on the sample has probably changed under the in�uence of

chemical reactions with water vapor during the exposure to atmospheric pressure.

Thus, the assumptions made for CsFlow3D are reasonable to give a prediction of

the cesium accumulation on the walls of the ion source that are not exposed to the

plasma. The validation of the predicted cesium deposition on areas with intense

plasma exposition is di¢ cult because of the corresponding thermal dynamics of

the sample itself.

Cesium Deposition and Thermal Desorption from the Bias Plate

The computation of the cesium deposition on the bias plate (see �gure 3.9 and

photograph 5.5) that is located at a distance of �z = 1 cm to the plasma grid is

particularly important because of its close proximity to the plasma grid. Cesium

release due to erosion close to the driver and from the backplate results in an

e¤ective cesium deposition onto the bias plate. In MANITU, the bias plate has

no thermal connection to chamber walls of the ion source. Therefore, the bias

plate has a di¤erent thermal dynamics than the walls of the ion source and its

temperature stability is limited.

Figure 6.13 a) shows the measured time trace of the bias plate temperature dur-

ing a long pulse in MANITU [FFK+07] for a RF-power of 58 kW. The thermal

desorption �ux of neutral cesium was determined by applying the dependence of

the cesium desorption on the temperature, derived from the desorption experi-

ments (see section 5.1.3). This desorption �ux is shown in �gure 6.13 b).

A signi�cant desorption of the range of 1013 cm�2 s�1 is generated after a plasma

pulse duration of 30 sec, when the bias plate exceeds a temperature of 80 �C. The

equilibrium temperature of 170 �C is obtained after 240 sec. The associated �ux

of 3x1014 cm�2 s�1 is by a factor of ten higher than the �ux after 30 sec.

Hence, the short-pulse cesium dynamics is expected to be di¤erent than the long-

pulse behavior, since the e¤ect of thermal activation is more pronounced in the

latter case. At �rst, the thermal desorption and accumulation of cesium onto the

bias plate of the ion source in MANITU was simulated for short pulses. Thermal

desorption processes regarding the bias plate were implemented in CsFlow3D by

using the time-trace presented in �gure 6.13 b).

Figure 6.14 shows the amount of cesium on the bias plate of MANITU, predicted

by the code, after a vacuum phase a) and a subsequent plasma phase b). A

maximum cesium deposition of 3.1x1014 cm�2 before and 4.3x1014 cm�2 after the

discharge phase was computed for each pulse. Hence, the cesium reservoir on
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Figure 6.13.: a) Measured (black line) increase of the temperature of the bias plate during
a 500 sec pulse in MANITU (H2, 58 kW, 0.3 Pa). The blue curve represents a �t of the

temperature dynamics that was derived from the measurement. b) Corresponding thermal

desorption �ux of neutral cesium from the bias plate.

the bias plate is increased during short pulses. The following conclusions can be

drawn:

� The accumulation pro�le in both contour plots of �gure 6.14 is asymmetric.
It was shown in section 6.1.2 that the cesium accumulation during the

vacuum phases is more pronounced in the upper areas of the ion source.

Thus, a higher cesium accumulation is available for transport in the upper

surface areas and more cesium can be deposited on the upper part of the

bias plate.

� During short pulses (< 20 sec), more cesium is deposited onto the bias

plate than can be removed by thermal desorption. The temperature in-

crease during short pulses is not high enough to balance the deposition

processes. According to �gure 6.13 b), thermal desorption from the bias

plate is expected to become relevant for a long pulse duration of several

hundreds of seconds when a bias plate temperature between 100 - 200 �C is

reached. This e¤ect is investigated in more detail in the following section.
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Figure 6.14.: Figure a): Computed cesium accumulation on the bias plate of MANITU after

4 min of cesium injection at 10 mg/h during a vacuum phase. Figure b): Computed cesium

accumulation on the bias plate after 4 min cesium injection at 10 mg/h in the vacuum phase,

followed by a discharge of 20 sec pulse duration.

6.2.2. Cesium Flux onto the Plasma Grid

The CsFlow3D code was used to simulate the cesium �ux onto the plasma grid in

MANITU during a 500 sec pulse after 100 short conditioning pulses with a length

of 20 sec and preceding vacuum phases of 4 min. These are typical conditioning

pulse times in MANITU [Kra09]. A cesium injection rate of 10 mg/h and a wall

temperature of Twall = 47 �C (s = 0.7) for the temperature controlled source walls

was used in the simulation. Furthermore, a negligible sticking of cesium on the

plasma grid was assumed, while the temperature data presented in 6.13 a) was

used to consider the heating of the bias plate.

Figure 6.15 shows the simulated time traces of the cesium �ux onto the plasma

grid. The blue curve shows the time trace of the total cesium �ux onto the
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Figure 6.15.: Time trace of the total (blue) and ionic (red) cesium �ux onto the plasma grid

during a 500 sec plasma pulse in MANITU considering the increase of the bias plate temperature

by the heat load from the plasma.

plasma grid, while the red curve shows the ionic contribution. An explanation of

the computed time trace is given in the following sections.

Cesium Release by Plasma-Wall Interaction

An initial peak of the simulated cesium �ux onto the plasma grid within the range

of 3x1013 cm�2 s�1 is predicted by the simulation. This �ux originates from both,

the release of cesium by the interaction of the plasma and the backstreaming ions

with cesium reservoirs, accumulated during the preceding vacuum phases. The

contribution from the evaporation oven to the total �ux is by a factor of ten lower

and negligible in comparison to the cesium release from the reservoirs.

As shown in �gure 6.11 and 6.12 of the previous section, the corresponding ero-

sion zones for these processes are limited to the surface areas close to the driver

exit and on the backplate of the expansion chamber. The associated high plasma

density and electron temperature at these surfaces that is bene�cial for cesium

desorption result, however, in a short path length for ionization. At a typical

electron temperature of Te = 8 eV and density of ne = 1018 m�3 near the driver



134 Chapter 6. Simulation Results from CsFlow3D

tPulse= 4 sectPulse= 2 sec

80604020 0 20 40 60 80
z [mm]

1.0
1.5
2.0
2.5
3.0

ΓPG [1013 cm2 s1]

80604020 0 20 40 60 80
160
140
120
100
80
60
40
20

0
20
40
60
80

100
120
140
160

z [mm]

y 
[m

m
]

Figure 6.16.: Ion-dominated cesium �ux onto the plasma grid at a time of 2 sec and 4 sec

after the discharge was started considering a preceding vacuum phase of 4 min.

exit, the mean free path length for ionization is less than 0.5 cm. This explains

the high ionic content of the initial cesium peak. The existence of a small neu-

tral fraction in the initial peak is a consequence of wall neutralization e¤ects on

surfaces close to the plasma grid.

In contrast to the neutral cesium atoms, the cesium ions are a¤ected by the elec-

tric potentials in the ion source. This e¤ect is in particular relevant in the plasma

sheath near the plasma grid that is positively biased against the chamber walls

in order to reduce the co-extracted electron current. Depending on the potential

di¤erence between the plasma and the bias potentials, the �ux of positive cesium

and hydrogen ions onto the plasma grid can be modi�ed. A reduction of the

positive ion �ux onto the plasma grid takes place if a bias potential higher than

the plasma potential is used. In this case, only ions that have enough energy

to overcome the positive sheath potential di¤erence are capable of reaching the

plasma grid. However, the interplay of the ionic cesium and proton �ux onto the

plasma grid with the negative-ion and co-extracted electron current is not fully

understood, yet. Detailed numerical investigations are in preparation [WGF09].
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Figure 6.17.: Vertical line plot of the cesium �ux onto the plasma grid at the beginning of

the discharge for z = 0 mm.

Figure 6.16 shows contour plots of the ion-dominated cesium �ux onto the plasma

grid at tPulse = 2 sec and tPulse = 4 sec after the discharge was started, as marked

by a) in �gure 6.15. Vertical line plots of the corresponding �ux are shown in

�gure 6.17.

A factor of ten more intense total cesium �ux is generated at the beginning of

the discharge than during the vacuum phase (see �gure 6.7). However, the time

traces indicate a quick depletion of the cesium reservoirs within the �rst seconds

of the discharge. Similar to the cesium deposition on the bias plate during short

pulses, a more intense cesium �ux is created onto the upper part of the plasma

grid.

The short decay time of the cesium �ux onto the plasma grid might be long

enough to generate proper cesium conditions for short plasma pulses of several

seconds. However, the creation of stable cesium conditions during long plasma

pulses of up to one hour will require more advanced ways of cesium control (see

section 6.3). The described ion-dominated cesium �ux is depleted within several

seconds.
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Cesium Release by Thermal Desorption from the Bias Plate

A second e¤ect is created during long pulses: the temperature increase of the

bias plate activates its cesium reservoirs and creates an additional dynamics. As

demonstrated by �gure 6.14, short conditioning pulses result in an e¤ective in-

crease of the cesium inventory on the bias plate. Hence, a maximum cesium

deposition of 4.4x1016 cm�2 (upper segment) is created on the bias plate after

100 conditioning pulses.

The thermal desorption of this reservoir generates a broad and very intense ce-

sium �ux peak after a pulse duration of 30 sec, when a bias plate temperature of

80 �C is exceeded. The thermally desorbed cesium from the bias plate is trans-

ported onto the plasma grid by collisions with the background particles and by

re�ection processes on the chamber walls. Figure 6.15 shows that a maximum

�ux density on the order of 1x1014 cm�2 s�1 is predicted after a pulse time of

180 sec corresponding to the saturation of the bias plate temperature. This peak

decays over the next 300 sec of the pulse.

Due to the low electron temperature Te = 1 eV and density ne = 1017 m�3 in

the vicinity of the bias plate, the mean free path length for ionization close to

the bias plate is 30 cm. As a consequence, the time trace of the ionic and atomic

cesium �ux onto the plasma grid, released from the bias plate, is dominated by

an atomic cesium �ux.

However, a small ionic fraction is generated by the following process: a fraction

of cesium that is released from the bias plate reaches areas with a high electron

temperature and density close to the driver, where it is instantly ionized and

transported back onto the plasma grid. An axial pro�le of the electron temper-

ature and density is given in section D of the appendix. Figure 6.18 shows the

spatial pro�le of the computed �ux of neutral cesium by thermal desorption from

the bias plate during a plasma pulse after 110 sec and 400 sec of the pulse, as

marked as b) and c) in �gure 6.15. Vertical line plots of the �ux onto the plasma

grid at z = 0 mm are shown in �gure 6.19. Both pro�les show a higher cesium �ux

onto the peripheral areas of the plasma grid. This is an e¤ect of the geometric

arrangement of the bias plate around the plasma grid (see �gure 5.5 and 3.9).

The intensity and pro�le of the predicted cesium�ux onto the plasma grid changes

with advancing pulse time. A pro�le that is symmetric in the vertical direction

is predicted at the beginning of the thermal activation, as shown in �gure 6.18

and 6.19 at 110 sec. The pro�le gets more and more asymmetric with advancing

pulse length, since the cesium �ux onto the lower half of the grid decreases after
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Figure 6.18.: Neutral-dominated cesium �ux onto the plasma grid by thermal desorption from
the heated bias plate after a pulse length of 110 sec and 400 sec.

200 sec. Figure 6.18 and 6.19 show asymmetric �ux pro�les after a pulse dura-

tion of 400 sec. This e¤ect corresponds to the decay of the total �ux in �gure

6.15. The presence of a �nite decay time is explained by the depletion of the

non-uniform cesium deposition on the bias plate. While the cesium reservoirs on

the lower surface areas of the bias plate are depleted at �rst and the total �ux

is reduced, the cesium accumulation on the upper segment remains high for a

longer time.

A comparison of the prediction from CsFlow3D with the time trace of the OES

signal of atomic cesium during the discharge, as shown in �gure 6.10, indicates a

good qualitative agreement. The peak that is observed in the OES signal during

the �rst seconds of the plasma phase is not related to the cesium dynamics. This

peak is caused by the gas pu¤ at the beginning of the discharge that is not rel-

evant for the transport of cesium. Therefore it is not included in the simulation

of the cesium transport.

The dynamics of the increase of the OES signal during the �rst 200 sec of the

discharge is well reproduced by the code. However, a much longer decay time
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Figure 6.19.: Vertical line plot of the cesium �ux onto the plasma grid by thermal activation

of the bias plate at z = 0 mm.

of the OES signal was observed in the experiment. There are di¤erent possible

explanations for this discrepancy. The OES gives a signal that is averaged over

a line-of-sight, which covers the plasma grid and the bias plate area. Cesium

desorption from the upper and lower area of the bias plate is possibly more pro-

nounced in the OES. Furthermore, it is extremely di¢ cult to predict the exact

initial deposition of cesium on the bias plate before the pulse is started, since it

is in�uenced by the history of cesium injection and removal during the preceding

operation period.

A prediction of the cesium density nCs over the plasma grid is possible by using

the equation of continuity nCs =
j
hvi , where hvi is the mean thermal velocity and

j the cesium �ux, taken from the transport simulation. This yields an atomic ce-

sium density of 2x1015 m�3 after 110 sec that rises to a maximum of 4x1015 m�3

after 180 sec. A determination of the density of atomic cesium from the OES

in MANITU is limited, since no Langmuir probe measurement of the electron

temperature and density close to the plasma grid was available. Hence, the cor-

responding data were taken from probe measurements at BATMAN that has a

similar source geometry, but is limited to short-pulse operation. This approxi-

mation gives a cesium density that increases from the lower to the mid range of

1015 m�3 during the plasma pulse [Ruf10].

The following conclusions can be drawn from the results of the transport simula-

tion:
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� The thermal desorption from the bias plate is the dominant mechanism

for neutral cesium to be transported onto the plasma grid during long

plasma pulses. The corresponding neutral cesium �ux is by a factor of

four higher than the predicted maximum �ux by the release of cesium by

other processes, which create an ion-dominated cesium �ux onto the plasma

grid.

� There is a good correlation between the simulated cesium �ux onto the

plasma grid and the signal of the OES. Thus, the OES signal of the atomic

cesium is an adequate method to predict the cesium �ux onto the plasma

grid.

A high and continuous �ux of neutral cesium is bene�cial to maintain a low work

function of a cesiated surface (see section 5.2). Thus, the predicted transport

of high amounts of neutral cesium from the bias plate onto the plasma grid is

advantageous for the source performance.

Nevertheless, the release of cesium during the discharge takes place in an uncon-

trolled way. This reduces the available inventory on the surface areas within the

ion source that can be activated for cesium release. The released cesium is lost

to inactive areas (see section 6.2.1), forming a sink for cesium.

An important aspect of the cesium dynamics during the plasma phases is

the e¤ect of deuterium operation, since both modes are planned for the ITER

neutral beam injection. The cesium transport investigations, presented within

the scope of this work, are related to source operation with a hydrogen plasma.

However, it is possible to draw conclusions from the previous simulations on the

in�uence of deuterium on the cesium transport.

The higher mass of the D2 molecule will have in�uence on the collision dynamics

during the transport of Cs and Cs+. Nevertheless, as a consequence of the high

mass of cesium, the e¤ect on elastic collisions is expected to play only a minor

role.

According to the previously shown numerical and experimental results, the

activation of cesium reservoirs on the walls and, especially on the bias plate,

of the ion source determines the dynamics and homogeneity of the cesium �ux

onto the plasma grid. It is expected that the activation of cesium reservoirs on

the walls and on the bias plate of the ion source is more intense in a deuterium

discharge.

Physical sputtering by D+2 and D
+ ions is expected to be more e¤ective. Con-
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sidering formula (4.32), the sputtering threshold energy for D+ is reduced by

approximately a factor two in comparison to H+. Furthermore the plasma heat

load, especially on the bias plate, is expected to be di¤erent.

Measurements show a factor of 1.5 higher density of atomic deuterium nD

compared to the atomic hydrogen density nH [FFF+06]. This may change the

chemical processes within the source in two ways. The increased density of

atomic deuterium may enhance the desorption of cesium from the surfaces by

chemical sputtering. Furthermore, it may have also an in�uence on the chemical

processes that are relevant for the negative-ion production, such as the formation

and dissociation of CsD.

6.3. Methods and Optimizations for Advanced
Cesium Control

A more e¤ective mechanism of cesium control is required to enable an intensive

cesium �ux onto the plasma grid, when the source operates at a low performance,

and to spare cesium when it is not required. Methods to ensure a controlled and

homogeneous cesium �ux onto the plasma grid were investigated with CsFlow3D.

As shown in section 3.2.1, cesium injection in the chamber of the IPP prototype

source is done by a cesium evaporation oven that is located at the upper region

of the backplate. Cesium that is stored on the walls and the bias plate of the ion

source is re-distributed by thermal evaporation and by particle bombardment.

The creation of cesium �uxes onto the plasma grid by re-distribution from the

walls has disadvantages:

� Large amounts of cesium are lost to surface areas that are not immersed to
the plasma. Cesium, released from these areas, can not be recycled during

ion source operation and mechanical removal is required after opening the

ion source.

� The geometric dependence on the position of the oven creates an inhomo-
geneous �ux pro�le onto the plasma grid.

� The cesium �ux during long plasma pulses in MANITU is determined by

the temperature dynamics of surface areas with high cesium accumulations.

This causes a strong dependence on the history of the cesium accumulation

onto the speci�c surfaces and the corresponding temperature conditions.
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Thus, it is important to �nd new approaches to improve the homogeneity and

the control of the cesium �ux onto the plasma grid. The use of a modi�ed

con�gurations with multiple evaporation ovens is a promising approach in order

to optimize the cesium homogeneity and is planned for the use in future large-scale

negative-ion sources, such as for the ELISE test facility. Technical limitations of

the available space and ports at MANITU restrict, however, the use of multiple

ovens for the IPP prototype source at the moment.

A numerical investigation of the use of multiple evaporation ovens at MANITU

was done in order to evaluate its advantage in comparison to the use of a single

oven.

6.3.1. Multiple Evaporation Ovens

The CsFlow3D code was used to simulate the cesium injection by two evaporation

ovens each with a �ux of 5 mg/h, located at the backplate of the ion source. The

same parameters than for the simulation of the cesium injection from a single

oven were used. Thus, a wall temperature of 47 �C (s = 0.7) and a time interval

of 4 min between the plasma pulses was considered.

Figure 6.20 a) shows the arrangement of the two ovens at the top and bottom

part of the backplate of the ion source. The upper position corresponds to the

original position from the con�guration with a single oven. Vertical pro�les of

the cesium �ux (z = 0) onto the plasma grid of MANITU, as predicted by the

simulation, are shown in �gure 6.20 b). The �gure shows pro�les of the total

cesium �ux onto the plasma grid during a vacuum phase and for a time of two

seconds after the beginning of the discharge. It corresponds to �gure 6.16 that

shows the �ux for the previous con�guration with a single oven.

These results show that the �ux de�ciency on the lower surface area of the plasma

grid can be compensated by using two evaporation ovens at the speci�ed posi-

tions. Thus, using two cesium ovens simultaneously can signi�cantly enhance the

homogeneity of the cesium �ux onto the plasma grid.

Beside the �ux onto the plasma grid, the cesium �ux onto the inner walls of

the source chamber and the bias plate during the vacuum and plasma phases

becomes also more evenly distributed by the use of two ovens. This is associated

with a buildup of evenly distributed cesium reservoirs that are activated during

the discharge phases. As a consequence of the creation of this advantageous ini-

tial distribution, the homogeneity of the cesium �ux during the plasma pulse is

improved, as well.
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Figure 6.20.: a) Schematic view of the con�guration with two evaporation ovens. b) Pro�le
(z = 0 mm) of the ion-dominated (1) cesium �ux on the plasma grid at a pulse time of 2 sec for

a con�guration with a single (black) and two evaporation ovens (red). Corresponding pro�le of

the atomic (2) cesium �ux onto the plasma grid during the vacuum phase of the ion source.

The application of two independent ovens requires, however, stable cesium injec-

tion rates for both ovens simultaneously. These are conditions di¢ cult to achieve

given the sensitivity of cesium on the temperature and the decay of the injection

rate with advancing operation time (see section 5.3). However, this is no principle

limitation and a method to overcome this issue has already been show in section

5.3: the use of surface ionization detectors with feedback loops to the temperature

control systems of the ovens is a possible way to maintain equal cesium injection

rates.

Using multiple cesium sources can improve the homogeneity, but does not ad-

dress the problem to obtain an active control of the cesium �ux onto the plasma

grid. The major fraction of the cesium from the evaporation oven is absorbed on

the chamber walls and the bias plate from where it is released and re-distributed

during the discharge in an uncontrolled fashion.
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Figure 6.21.: Position of the individual dispensers in the array in front of the plasma grid of
MANITU. The cesium �ow from the dispensers is directed onto the plasma grid. In order to

improve the visibility, the size of the individual dispensers was increased.

6.3.2. Cesium Injection close to the Plasma Grid

These inherent disadvantages of the use of the current oven system can possibly

be resolved by using small cesium dispensers (see section 5.3) in close proximity

to the plasma grid (several cm). This allows the control of the cesium �ux onto

the plasma grid directly by regulating the dispenser current. Dispensers with

a capacity of up to 10,000 mg are commercially available. The properties and

operation constraints of this type of cesium source are described in section 4.2.7.

A thermal stabilization and protection of the dispensers from direct plasma in-

teraction is necessary in order to avoid a depletion of the cesium inventory by an

unintended temperature increase.

The cesium injection from an array of eight dispensers at a distance of several

cm in front of the plasma grid was simulated with the CsFlow3D code. A total

injection rate of 10 mg/h corresponding to the injection rate from the evapora-

tion oven was considered in the calculation. The �ow pro�le from the individual

dispenser depends on the design of the corresponding nozzle that is related to

the chosen geometry. Nozzles with a cosine-type �ow pro�le that are directed
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Figure 6.22.: Simulated cesium �ux (steady-state) onto the plasma grid in MANITU during

both the vacuum and the plasma phase from an array of eight dispensers at a distances of 6 cm

and 8 cm to the plasma grid at a total injection of 10 mg/h. The dashed lines mark the path

for the line plots shown in �gure 6.23.
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Figure 6.23.: Line plot along the dashed lines in 6.22 of the cesium �ux distribution onto

the plasma grid of MANITU from the dispenser array at a distance of 6 cm, 8 cm and 10 cm.

Dashed Lines: Flux during the vacuum phase, Solid Lines: Flux during the plasma phase.

onto the plasma grid were used in the simulation, since a narrow �ow pro�le is

disadvantageous to obtain a homogeneous cesium distribution. For the sake of

comparability, the remaining parameters were chosen identical to the ones that

were used in the previous simulations (see section 6.2.1).

A non-cesiated source with wall temperature of Twall = 47 �C and negligible stick-

ing on the plasma grid was used in order to show the �ow characteristics of the

dispenser array. The bias plate was considered to be at a stable temperature

identical to the wall temperature for the dispenser studies.

Figure 6.21 shows the position of the cesium dispensers close to the plasma grid.

The computed �ux during a vacuum and a plasma phases at a distance of 6 cm

and 8 cm from the plasma grid is shown in �gure 6.22. Corresponding pro�le

plots along the dashed lines in the contour plots are shown in �gure 6.23.

The simulation predicts a total cesium �ux of the range of 1013 cm�2 s�1 in both

the vacuum and the discharge phase for a distance below 10 cm to the plasma

grid. A small reduction of the total cesium �ux during the discharge is obtained

compared to the �ux in the vacuum phase. This is an e¤ect of the backscattering

of cesium particles by collisions with the particle background during the plasma

phase.

The order of magnitude of the cesium �ux onto the plasma grid from the dispenser

array is comparable to the cesium release at the beginning of the discharge, con-
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sidering the cesium injection by the evaporation oven (see �gure 6.16). A compu-

tation of the dynamics of this �ux revealed, however, a short decay time during

the discharge, while the dispenser array is capable of delivering a constant �ux

onto the plasma grid at any time. The corresponding �ux from the cesium dis-

penser array during the vacuum phase is by a factor of ten higher (see �gure

6.7) than the one by the injection with the cesium oven. This is an e¤ect of the

orientation of the array onto the plasma grid and the close distance of several cm.

An analysis of the predicted homogeneity of the dispenser �ux onto the plasma

grid shows that the pro�le at a distance of 6 cm is peaked with respect to the

positions of the individual dispensers. The increase of the distance to 8 cm results

in an improved homogeneity. This is a consequence of the broadening of the �ow

pro�le from the individual dispensers, which results in an enhanced overlap.

The improved homogeneity takes place, however, at the expense of the total �ux

onto the plasma grid. Figure 6.24 shows the dependence of the total (blue curve)

and ionic (red curve) cesium �ux onto the plasma grid at a distance d during the

discharge phase. Hence, the total cesium �ux onto the plasma grid is reduced

by increasing the distance to the plasma grid. This e¤ect is related to the ab-

sorption of cesium by the chamber walls, which is proportional to the distance

of the dispenser array to the plasma grid. While the broad, cosine-distributed

�ow pro�le from the dispensers is bene�cial to obtain a homogeneous �ux pro�le

onto the plasma grid, it is disadvantageous for the transport of cesium onto the

chamber walls of the ion source.

Furthermore, an increase of the ionic fraction with the distance is predicted by

the transport code. If the dispenser array is moved away from the plasma grid,

a signi�cantly higher electron temperature and density is obtained at the posi-

tion of cesium release. Axial pro�les of the electron temperature and density are

given in section D of the appendix. A fraction of ionic cesium that is lower than

22 % is predicted by the code at a distance below 6 cm to the plasma grid. This

value corresponds to axial electron temperatures in the range of 1 eV. Moving

the dispenser array to a distance of 18 cm away from the plasma grid, results in

an increase of the fraction of cesium ions to 87 %, which corresponds to a high

electron temperature of 10 eV. Despite of the high electron temperature, a small

fraction of atomic cesium reaches the plasma grid. This is an e¤ect of the neu-

tralization of ionic cesium on walls at low electron temperatures and the radial

pro�le of the electron temperature.

Both, the cesium wall absorption and the ionization of atomic cesium from the

dispensers, are more and more pronounced if the distance to the plasma grid is in-



6.3. Methods and Optimizations for Advanced Cesium Control 147

2 4 6 8 10 12 14 16 18 20 22
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8

Total Flux
Ionic Flux

Γ PG
[1

013
 c

m
2
 s

ec
1
]

d [cm]
Figure 6.24.: Total (blue) and ionic cesium �ux (red) onto the plasma grid, emitted from a

dispenser array (see �gure 6.21) at a distance d to the plasma grid. A signi�cant increase of

the fraction of ionic cesium is caused by raising d.

creased. This e¤ect results in a transition to conditions comparable to those when

cesium is injected by the evaporation oven at the backplate of the ion source. The

existing oven that is located at a distance of 22 cm to the plasma grid deposits the

cesium predominantly on the walls of the source chamber, as described in section

6.2.2. A transition to an equivalent behavior has to be avoided in order to ensure

that an e¤ective control of the cesium �ux onto the plasma grid is possible by

regulating the dispenser current.

Thus, the optimization of the distance d is a trade-o¤ between the homogeneity

of the cesium �ux onto the plasma grid and the reduction of wall accumulations

and cesium ionization. A distance of d = 8 cm was found to be high enough to

create a homogeneous �ux distribution.

This optimized dispenser con�guration can be used as an instrument for inde-

pendent cesium control. Even if uncontrolled cesium releases take place and the

reservoirs at the walls of the source are thereby depleted, it is still possible to

obtain a direct cesium control by the dispenser array.

Since the bias plate in MANITU is located close to the plasma grid, it is impos-

sible to avoid a cesium deposition on the plate while maintaining a su¢ ciently

homogeneous �ux pro�le onto the plasma grid. As described in section 6.2.2,

the MANITU bias plate can be thermally activated by plasma heating, which

might interfere with the cesium control by the dispenser current. Hence, the use
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of the dispenser array in combination with a temperature control system of the

bias plate may be an option to improve the e¤ective control. Using a bias plate

temperature that is kept permanently at a high level, for example 200 �C, is a

possible solution for this problem. The high temperature results in an instanta-

neous thermal desorption of the accumulated cesium that enhance in this case

the total �ux onto the plasma grid.

Nevertheless, the increased loss of cesium through the aperture system is the

main disadvantage of the cesium injection close to the plasma grid. A maximum

cesium loss of 1.8 mg/h (vacuum phase) is expected for the optimized dispenser

arrangement at a distance of 8 cm from the plasma grid. This is by a factor of

seven higher than the corresponding loss for the cesium injection by the evapora-

tion oven (see �gure 6.2). The e¤ects of these increased cesium losses through the

aperture system and the associated e¤ect on the high voltage holding capabilities

cannot be answered within the scope of this work and have to be investigated at

the ion source test facilities.

6.4. In�uence of the Cesium Conditions on the
Current Density

The formation of an intense negative-ion beam is accomplished by superimposing

the current contributions from the beamlets formed by the individual apertures

of the extraction system (see section 3.9). Besides a su¢ ciently high total beam

current, the neutral beam injector system for ITER has speci�c requirements

regarding the quality of the extracted beam. A homogeneity of �10% of the

extracted beam current density over the extraction area is required in order to

grant a proper beam focusing. The divergence of the negative-ion beam depends

on the beam current and the acceleration voltage. A high �uctuation of the beam

current density will create unfocused fractions of the 1 MeV beam that may dam-

age the acceleration system.

Special attention is required in case of the surface production of negative ions.

Geometric e¤ects, the magnetic �eld and especially the cesium conditions may

a¤ect the homogeneity of the extracted current density.

An evaluation of these e¤ects requires a computation of the transport of negative

ions from the production surface into the extraction apertures. As described in

section 3.1.2, the Monte Carlo based 3D transport code TrajAn [GWF09] was

developed in parallel to CsFlow3D in order to investigate this process. This code
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is capable of computing the local extraction probability on the plasma grid and

the current density distribution over the extraction apertures. The neutralization

of negative ions by collisions with plasma particles result in a signi�cant reduc-

tion of the extracted negative-ion current density. An overview of the destruction

processes that are included in TrajAn is given in section 3.1.2.

Similar to the cesium transport codes, 3D maps of the particle densities and tem-

perature that were derived from measurements at the IPP test facilities are used

in TrajAn. The 3D magnetic �eld topology within the ion source was determined

by numerical methods (see section C of the appendix). A given distribution of

the negative-ion production over the plasma grid can be used as an additional

input parameter.

This permits an evaluation of the in�uence of the di¤erent quantities on the

current-density distribution. A coupling of the simulation of the cesium condi-

tions on the plasma grid with the production and transport of negative ions is an

important objective. It allows a correlation of the extracted ion current with the

homogeneity and dynamics of the cesium �ux and coverage on the plasma grid.

The �rst step to address this objective was done by the development of a coupled

simulation environment of TrajAn and CsFlow3D, which was applied to inves-

tigate the e¤ects of inhomogeneous cesium conditions on the plasma grid. The

e¤ect of a spatial distribution of the negative-ion production rate according to

the cesium conditions on the plasma grid was introduced in the transport simula-

tion by a simpli�ed coupling scheme: the spatial distribution of the negative-ion

production �ux �H-(x; y; z) on a speci�c surface area in TrajAn was weighed lin-

early with the cesium �ux pro�le �Cs(x; y; z) onto the plasma grid, computed

with CsFlow3D:

�H- (x; y; z) = ��Cs(x; y; z): (6.2)

This strong coupling of the negative-ion production with the cesium �ux is

strongly motivated by the observations from the work function measurements,

as described in section 5.2. The results from the measurement indicate that the

work function of the surface depends on the cesium �ux, since it is required to

counteract the in�uence of the surface degradation by chemical contamination.

Saturation e¤ects of the work function on the plasma grid during an intense ce-

sium �ux will, however, require a coupling that includes the creation and removal

of cesium layers on the plasma grid. This is subject to further investigations.

Two di¤erent scenarios were considered to facilitate the dynamics of the cesium

�ux onto the plasma grid:
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1. The short-pulse behavior (several sec) of the ion-source that is predomi-

nantly determined by the cesium distribution, created during the previous

vacuum phase.

2. The long-pulse behavior (several 100 sec) that is strongly determined by

the release of cesium from the bias plate, heated up to 200 �C during the

pulse.

6.4.1. Homogeneous Cesium Conditions

In order to distinguish the e¤ects of inhomogeneous cesium conditions and non-

cesium related e¤ects, such as the plasma grid geometry or the magnetic �eld, on

the distribution of the negative-ion current density, a transport computation for

the case of a high homogeneity of the cesium �ux was considered. The cesium

�ux pro�le that was computed during a vacuum phase for a very low sticking

coe¢ cient of s = 0:01, as shown in �gure 6.8, was therefore used in order to

demonstrate the e¤ects that are related to the transport process.

An important quantity for homogeneity studies in a negative-ion source is the

local extraction probability on a speci�c surface element of the plasma grid. The

plasma grid surface is partitioned into equal surface area elements for the deter-

mination of the local extraction probability. The number of extracted negative

ions that were started from each of these elements is computed by the transport

code. A spatially resolved local extraction probability is computed by dividing

this number of extracted negative ions by the number of all negative ions, started

from this element. For example, a local extraction probability of 33 % at a spe-

ci�c position on the plasma grid means that every third negative ion that was

started at this point reaches the extraction apertures.

The pro�le of the local extraction probability shows the surface areas that con-

tribute predominantly to the extracted current density. This allows an evaluation

of the relevance of a speci�c surface element on the current density of the beam.

Extraction Probability Pro�le

The extraction probability pro�le was computed for the plasma grid geometry

(see section 3.9) and the magnetic �elds (see �gure C.1) in MANITU. Negative

ions, created on the plasma grid, are accelerated by the plasma sheath to a

certain energy that depends on the bias voltage. A negative-ion starting energy
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Figure 6.25.: a) Contour plot of the local extraction probability on the upper half of the
plasma grid in MANITU, considering a negative-ion starting energy of 1 eV. b) Corresponding

line plot of the extraction probability across the dashed line in �gure a).

of EH� = 1 eV is used for the transport calculation, as described in more detail

in [GWF09]. Figure 6.25 shows a contour plot of the local extraction probability

for the upper half of the MANITU plasma grid.

The maximum extraction probability of 55 % is obtained at the chamfered areas

(see �gure 3.5) of the plasma grid surface. This means that approximately every

second negative ion that is produced on the chamfered areas is extracted. The

inclined starting vectors on these area segments lead to trajectories with a higher

redirection probability. A large parallel component regarding the plasma grid

surface of the ion velocity vector is bene�cial for the bending of the ion towards
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Figure 6.26.: a) Spatially resolved local extraction probability and b) corresponding extracted
negative-ion current density for the apertures of the plasma grid in MANITU at a starting

energy of 1 eV.

the plasma grid. Additionally, the trajectories with inclined starting angles are

in closer proximity to the extraction �elds. This increases the probability for an

extraction event.

At the edges of the plasma grid, the extraction probability is drastically reduced

to probabilities below 10 %. The extraction probability of negative ions that are

created apart from the aperture area, is limited because of the �nite mean free

path length due to destruction processes.

The pro�le of the extraction probability is also a¤ected by the orientation of the

local magnetic �eld vector. This vector results from a superposition of the �lter

�eld (see �gure C.1 in the appendix) in the horizontal and the electron de�ection

�eld (see �gure 3.10) in the vertical direction. Each row of the extraction grid

magnets has a �eld direction opposite to the precessing one (see �gure 3.9). This

creates a shift of the extraction probability that alternates in positive or negative

z-direction, depending on the direction of the magnetic �eld of the individual

magnet row pair.

Integrating the local extraction probability pro�le over the MANITU plasma

grid area results in a total extraction probability of 27 % for the given magnet

con�guration (see �gure C.1) and a starting energy of EH� = 1 eV.

The negative-ion beam is formed by a superposition of the current densities from

the individual beamlets, extracted by the apertures of the plasma grid.
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Current-Density Pro�le

The current-density pro�le is determined in the simulation by dividing the num-

ber of ions extracted through an element on the transparent aperture area by the

area of this element. For the case of comparison, the current-density pro�le was

normalized with respect to the maximum current density. The total maximum

of the current density jion = 1 is obtained at the edges of the aperture array, as

shown in �gure 6.27 c).

Figure 6.26 shows a contour plot of the extraction probability and the corre-

sponding extracted current density over several apertures of the plasma grid for

an evenly distributed ion production. A maximum current density is obtained at

the edge segments of the area of each aperture, close to the negative-ion produc-

tion areas. This is a consequence of the corresponding short path length until the

ions reach the extraction aperture. The maximum current density twists in the

same manner as the extraction probability.

In case of an evenly distributed negative-ion production, beamlet inhomogeneities

are created by e¤ects related to the plasma grid geometry and the magnetic �eld

topology. An e¤ect on the divergence of the individual beamlets and thus on the

extracted negative-ion beam is expected by the inhomogeneous distribution of

the current-density pro�le.

6.4.2. Inhomogeneous Cesium Conditions

Current-Density Pro�le

The extraction probability that is a¤ected by the magnetic �eld and geometric

conditions of the plasma grid is per de�nition independent of the production rate.

An unevenly distributed negative-ion production by an inhomogeneous cesium

�ux is expected to have an e¤ect on the pro�les of the extracted negative-ion

current density. The transport of negative ions from the production surface into

the extraction apertures, simulated by the TrajAn code, is not a linear process.

Several physical e¤ects a¤ect this transport process:

� negative-ion scattering by elastic collisions with plasma particles in the ion
source,

� ion de�ection by the Lorentz force due to the magnetic �eld within the ion
source.
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Thus, the correlation between the spatial distribution of the negative-ion produc-

tion and the extracted current density is not straightforward.

Cesium �ux conditions that correspond to short and long plasma pulses were

considered to investigate their e¤ect on the current-density distribution. For

short plasma pulses, the vacuum phases are usually by a factor of 10 longer (sev-

eral 100 sec) than the consecutive discharge phase (several 10 sec). Hence, the

negative-ion production during a short pulse is strongly in�uenced by the cesium

�ux distribution during the previous vacuum phase. The pro�le of the cesium

�ux during a previous vacuum phase considering a source wall temperature of

47 �C, as shown in �gure 6.7 was used to simulate the short-pulse behavior. Ce-

sium release from the bias plate was found to determine the cesium conditions

during long discharges. Therefore, the pro�le of the atomic cesium �ux onto the

plasma grid after a pulse duration of 110 sec, as shown in �gure 6.18, was used

to compute the long-pulse characteristics.

Figure 6.27 shows the results of these calculations. The contour plots a) and b)

show the current-density pro�le for the cesium conditions considering short and

long plasma pulses. For comparison, the pro�le of a homogeneous cesium �ux

that was described in section 6.4.1 is shown in �gure 6.27 c). The computed

current-density pro�les show that inhomogeneities of the cesium �ux conditions

and the corresponding unevenly distributed ion production are not compensated

by broadening e¤ects during the ion transport. Figure 6.27 d) shows horizontal

and vertical line plots in order to see the di¤erences for the short and long pulse

behavior.

Comparing the current-density distribution for the homogeneous cesium �ux with

the one for the short pulse characteristics shows that the current density is reduced

in the vertical (y) direction. While the long pulse simulation shows a symmetric

pro�le in the vertical direction, an asymmetry was computed in the horizontal (z)

direction. This enhancement of the current density at the peripheral beamlets of

the plasma grid appears also for the case of a homogeneous cesium �ux, but is in

particular pronounced for long pulses.

This e¤ect can be explained by the increase of the �lter �eld closer to the perma-

nent magnets at the edge of the plasma grid area, as shown in �gure C.1 of the

appendix. The strength of the magnetic �eld increases from 7 mT at the center to

12 mT at the peripheral apertures in the horizontal direction. Hence, the radius

of ion gyration that is bene�cial for the transport of the surface-generated neg-

ative ions into the aperture system is reduced at the edge. During long plasma

pulses this e¤ect is even more pronounced by the �ux distribution of the cesium
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Figure 6.27.: a)-c) Contour plots of the simulated extracted negative-ion current density
pro�les over the plasma grid considering di¤erent cesium �ux conditions: a) Short pulse pro�le

for a previous vacuum phase with a sticking coe¢ cient of s = 0:7. b) Long pulse pro�le

considering the atomic cesium �ux from the bias plate. c) Short pulse pro�le for homogeneous

ion production considering an atomic cesium �ux during a vacuum phase for s = 0:01. d)

Horizontal and vertical line plots across the dashed lines in the contour plots.
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release from the bias plate. The bias plate forms a frame around the plasma grid.

Hence, a more intense cesium �ux is created at the peripheral areas of the grid

area, as it is shown in �gure 6.18.

The coupled transport simulation, considering the spatial distribution of the ce-

sium �ux for short and long pulses, shows that an inhomogeneous production rate

can not be compensated by the negative-ion transport process. Several physical

e¤ects regarding the transport of cesium and negative ions were identi�ed and

evaluated that contribute to the generation of inhomogeneities of the current-

density distribution.

Nevertheless, there are additional factors that may cause inhomogeneities of the

current-density pro�le. The magnetic �lter �eld can create a plasma drift that

in�uences the distribution of the particle densities and temperatures in the source

volume. This in�uences the transport and destruction of the negative ions, but

also the distribution of the ion generation. While the �ux of atomic hydrogen is

not a¤ected by the drift, it causes an asymmetric distribution of positive ions,

which has e¤ect on the negative-ion production. As described in section 3.1.1, the

positive ions are very important for the emission of negative ions from the plasma

sheath in order to compensate the negative space charge close to the production

area.

The combination of CsFlow3D and TrajAn can now be extended in order to eval-

uate the impact of these physical e¤ects on the current-density distribution. This

is the �rst step to allow a numerical optimization of the current-density distrib-

ution.

The inhomogeneities that were determined by the coupled simulation are disad-

vantageous for the use in the ITER neutral beam injection system. Nevertheless,

the linear coupling with the cesium �ux represents a worst case scenario. The

saturation of the work function of the plasma grid surface after a long cesium

exposition might result in a signi�cant improvement of the homogeneity.

Furthermore, the design of future large-scale ion source, like ELISE, will be di¤er-

ent from the IPP prototype source that was investigated. A better homogeneity

is expected by the higher volume-to-surface ratio in these systems. Additionally,

several design aspects were improved as a consequence of the experience with the

prototype source. The use of multiple cesium ovens and a magnetic �lter �eld

con�guration with an improved homogeneity were integrated in the new source

design.
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7. Consequences for Future Ion
Sources

Results from numerical studies with CsFlow3D and from experimental investiga-

tions indicate several consequences for the improvement regarding the homogene-

ity and long-time stability of future ion sources.

The experimental studies of the de- and adsorption kinetics of cesium layers re-

vealed a high surface a¢ nity. The CsFlow3D simulations during the vacuum and

discharge phase show that the cesium is transported onto the plasma grid by the

activation of cesium reservoirs on the chamber walls and the bias plate.

This activation is, however, limited to areas that have intensive contact with the

plasma and the backstreaming ions. Certain reservoirs, especially those close to

the evaporation oven, are not exposed to the plasma or the backstreaming ions

and stay passive during source operation. Large reservoirs of cesium are accu-

mulated on these areas during both the vacuum and plasma phases of ion source

operation. These cesium reservoirs are wasted and cannot contribute to the ce-

sium transport onto the plasma grid. In MANITU, the wasted cesium is removed

mechanically after the operation periods that can last up to several months.

This is disadvantageous for the remote handling requirements of the ITER

negative-ion source, since the available cesium resources are limited in this case.

The waste of cesium will reduce the time until a replacement of the cesium reser-

voir is necessary, which means a higher frequency of maintenance. There are

several ways to reduce or avoid this problem.

A possible way to improve this situation is to align the nozzles of the evaporation

oven directly onto the erosion zones, which includes also an optimization of the

shape of the nozzles in order to generate a corresponding �ow pro�le. Both, the

erosion patterns and the �ow pro�le for a speci�c geometry of the nozzle system

can be simulated with the CsFlow3D code. This allows optimization studies in

dependence of both factors.

The described method can be used in combination with a permanent activation
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of the passive areas by an intensi�ed heating of the speci�c areas close to the

nozzles. According to the desorption measurement, a wall temperature above 90
�C will be required in order to balance the maximum accumulation rate for the

current con�guration of cesium injection.

An important reason for the buildup of large, inactive reservoirs is the limited con-

tact with the plasma that e¤ectively releases cesium during the discharge phases.

The driver of the ion source is located in the middle of the rectangular chamber of

the negative-ion source. This geometric con�guration creates an intense plasma

contact with the side walls, while the contact with surface areas at the top and

bottom of the source is very limited. Hence, an expansion of the RF-coil to a

racetrack geometry in order to increase the wall contact is a possible solution to

resolve this issue.

Inhomogeneous �ux pro�les were predicted by the transport simulation as a conse-

quence of the position of the cesium oven in the upper half of the source chamber.

The use of two evaporation ovens was predicted to improve the �ux homogeneity.

Nevertheless, a more important consequence for the improvement of the homo-

geneity by the use of two ovens in parallel is that special care has to be taken in

order to maintain a similar cesium injection from both systems. The long-term

measurement of the oven performance indicates that this is only possible in com-

bination with an appropriate monitoring of the performance of both ovens.

Using a con�guration with two or more evaporation ovens will, however, not im-

prove the control of the cesium �ux onto the plasma grid. The simulation of the

cesium transport during the plasma phase showed that the release of cesium from

the chamber walls takes place in a very uncontrolled fashion. Available options

for cesium control are very limited for the given con�guration despite of thermal

activation, as it is predicted in the transport simulation to take place on the bias

plate in MANITU during long plasma pulses. This e¤ect could be utilized in

combination with a temperature control of the bias plate. A bias plate that is

kept permanently at a low temperature, like 20 �C, could be used to collect ce-

sium. This cesium can then be released on purpose by disabling the temperature

control. An extension of this concept is the use of cold areas near the plasma

grid. These cold-spots can be used for a controlled absorption and re-emission of

cesium close to the plasma grid.
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A high performance neutral beam injection system is required for the heating

and current drive of the large-scale fusion experiment ITER. Due to the required

neutral beam energy of 1 MeV, a system based on the acceleration and neu-

tralization of negative hydrogen ions is necessary. The IPP contributes to the

ITER heating system by the development of a RF-driven source for negative

ions. RF sources are preferred due to their nearly maintenance-free operation

that is bene�cial for the remote handling requirements of ITER. Ambitious tech-

nical requirements have to be ful�lled by this source that must produce a current

density of 200 (300) A/m2 accelerated D�(H�) ions at a source �lling pressure

of 0.3 Pa with an electron-to-ion ratio < 1 and a pulse length of up to 1 hour.

The extracted beam current demands a large-scale ion source (1.9 x 0.9 m2). An

important requirement especially when the large size of the extraction area is

taken into consideration is the homogeneity of the extracted ion beam, which has

to be better than �10 %.
Only a negative-source using the surface production of H� by the conversion of

neutral and ionic hydrogen is capable of ful�lling these requirements. These posi-

tive and neutral hydrogen particles are created by RF-coupling in the driver of the

ion source. The conversion e¢ ciency for the surface production depends on the

work function, making the reduction of the plasma grids work function a primary

objective. This low work function plasma grid surface is obtained by the injection

of cesium into the ion source. The state of the cesium on the plasma grid during

plasma operation is the dominating factor for the negative-ion production.

Understanding the dynamics of cesium during the vacuum as well as during the

discharge phases of the ion source is essential to produce cesium conditions that

are homogeneous in space and stable in time. Monte Carlo based numerical

transport models are important to understand the cesium dynamics within the

ion source and can help to optimize the stability and homogeneity of the cesium

�ux onto the plasma grid. Input data regarding the ad- and desorption of cesium

from the walls of the ion-source vessel are necessary to perform meaningful com-

putations.
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Available data regarding the ad- and desorption kinetics of cesium on metal sam-

ples exist, however, only for fractional monolayers of cesium under ultra-high

vacuum conditions (< 10�8 Pa) at high sample temperatures (> 1000 �C) and

for the case of a cesium vapor pressure equilibrium. The conditions in negative-

ion sources are signi�cantly di¤erent, where a higher background pressure (10�3 -

10�4 Pa) and lower wall temperatures (TWalls = 20 - 50 �C, TPlasma grid = 150 �C)

are used. The results of calculations for the dynamics of cesium that rely on the

available data for elemental cesium would indicate a quick depletion of cesium

through the plasma grid apertures during the night. This is in complete disagree-

ment with experimental observations at all negative-ion sources that use cesium.

An understanding of the cesium dynamics and associated numerical transport

calculations require input data that are relevant for the conditions within the

RF-driven ion source.

To acquire this data, dedicated investigations were performed in experiments at

the University of Augsburg. The experimental setup was designed to allow mea-

surements at plasma parameters and pressure conditions that are similar to those

near the plasma grid surface of the RF-driven ion source. Besides the gathering

of input data for numerical studies, the experimental setup was also used to test

new cesium diagnostics and to optimize the cesium injection system.

Measurements of the ad- and desorption of cesium from a temperature-stabilized

metal sample with a quartz microbalance were performed. A molybdenum sam-

ple, similar to the material of the plasma grid in the ion source, at relevant

temperatures of 20 - 160 �C was investigated in the experiment. The dependence

of the desorption rate and the sticking coe¢ cient of cesium on the source walls

was derived, both of which serve as input parameters for the transport simula-

tions.

The desorption measurement showed a signi�cantly higher surface a¢ nity than

expected for elemental cesium. Stable multilayer structures of cesium were de-

posited on the sample for temperatures below 55 �C, which should be not possible

taking into account the vapor pressure of elemental cesium. This is an e¤ect of

the in�uence of chemical reactions with impurities that stabilize the adsorbed

cesium. Signi�cant cesium desorption from the sample was measured for temper-

atures above 65 �C, but at desorption rates at several order of magnitude below

those expected from the vapor pressure of pure cesium.

The microbalance was used to determine data regarding the surface a¢ nity of ce-

sium for ion source relevant temperature and pressure conditions. The measured

temperature dependence of the thermal desorption rate is in agreement with spec-
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troscopic investigations of thermal evaporation of cesium from a plasma-heated

surface within the long pulse negative-ion source test facility MANITU. This

data set helps to understand the e¤ects of thermally-released cesium within the

negative-ion source and facilitates realistic transport simulations of the cesium

dynamics.

The cesium coating of the plasma grid surface results in a signi�cant reduction

of the work function that is a dominant factor for the surface generation of nega-

tive ions. A photoelectric determination of the work function of a cesium-coated

sample during plasma exposition is limited by the interference of the inevitable

currents onto the sample during the discharge. It was possible to overcome this

problem by pulsing the hydrogen plasma while limiting the work function mea-

surement time to the plasma-o¤ cycles in order to generate a quasi-continuous

plasma exposition. This modi�cation is a signi�cant expansion of the measure-

ment capabilities of the existing work function setup at the University of Augs-

burg. It is now possible to measure the work function under plasma conditions

that are similar to those close to the plasma grid surface of the RF-driven ion

source at IPP.

A minimum work function of a cesium-coated molybdenum sample of 2:69 �
0:08 eV, signi�cantly higher than the literature value of pure cesium (2.14 eV),

was determined under ion-source relevant vacuum conditions. Equivalent mea-

surements during plasma exposure showed a lower work function of 2:2� 0:2 eV,
which indicates a cleaning e¤ect by the bombardment with plasma particles dur-

ing the discharge.

Disabling the cesium �ux onto the sample resulted for both cases in a time-

dependent increase of the work function. This degradation of the surface is an

e¤ect of cesium compounds with a signi�cantly higher work function than pure

cesium. Re-enabling the cesium exposure counteracts the degradation e¤ects and

revealed the necessity for a stable and permanent cesium �ux onto the surface in

order to maintain a low work function. These degradation and re-conditioning

e¤ects are also observed in negative-ion sources when the source is operated the

�rst time at the morning without cesium exposure during the night.

The results of the measurements show that a low work function cesium layer can

be re-established on a substrate of cesium compounds with a high work function.

This explains the requirement of a permanent cesium injection into the ion source.

The observed regeneration e¤ect of the work function by adding fresh layers ce-

sium is very advantageous to obtain a stable ion production. It is impossible to

maintain a stable cesium coverage of 0.5 monolayers, as required for the optimum
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work function, for the operation conditions within negative-ion sources, which are

far away from UHV vacuum conditions.

Stable and reliable cesium injection systems are required to ensure that the plasma

grid is supplied permanently with fresh cesium, which keeps the work function at

a low level during source operation. A detector based on the surface ionization

principle was designed to provide a new method to monitor atomic cesium �ows in

a vacuum environment. The detector design allows long-term �ow measurements

with periods of several weeks for ten hours per day. With this new diagnostic

it is possible for the �rst time to test and optimize di¤erent designs of cesium

injection systems in a controlled laboratory environment prior to their use at the

IPP negative-ion sources.

The monitoring system was applied to evaluate a design optimization of the exist-

ing evaporation oven design. A signi�cant improvement of the oven was achieved

by a systematic improvement of the heating con�guration for the body of the

oven, which is the part that contains the liquid cesium. The use of the improved

oven design at the IPP negative-ion source test facilities allows a more repro-

ducible and stable cesium injection.

It was possible to determine a typical cesium injection rate of 10 mg/h for the op-

eration conditions that are used at the IPP test facilities, which is an important

input parameter for the cesium transport simulation. However, an additional

long-term test revealed a deterioration of the cesium �ow from the oven with

advancing operation time (1 - 2 weeks) after breaking an ampoule containing

1000 mg of cesium. This test showed the requirement to increase the opera-

tion temperatures of the oven in order to maintain a constant cesium �ow and

demonstrated the bene�t of a permanent �ow monitoring by surface ionization

detection.

In order to take advantage of the online-monitoring of the cesium �ow at the IPP

test facilities, a surface ionization detector that is integrated in the nozzle system

of the existing evaporation oven was developed. This is the �rst step towards

an online monitoring of the �ow from the oven. This will allow a �ow control

by a feedback loop via the oven temperature in order to maintain a constant

injection rate. Besides its use to obtain an advanced control the cesium injection

rate, this system will provide a measurement of the cesium consumption of the

IPP negative-ion sources, which allows a correlation of the injected amount of

cesium and the source performance. First tests of this online-monitoring system

are running at the moment.

The observed decrease of the oven performance with the operation time is related
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to the large inner area of the oven that enhances the e¤ects of re-distribution

processes, and, thus, the vulnerability of cesium within the oven to chemical re-

actions. A consequence for future designs that use a liquid reservoir is to reduce

the surface to volume ratio of the system.

Furthermore, the use of an oven con�guration with a heated valve that can be

closed during the inactive phases of the oven is a method to reduce the in�uence

of cesium contamination. A valve-based cesium oven is successfully applied for

the negative-ion sources at the NIFS1 in Japan.

Another way to overcome the decrease of the oven performance with the opera-

tion time is to use a di¤erent design of the cesium source. The reservoir of liquid

cesium has the inherent disadvantage that the cesium is vulnerable to chemical

contamination. Commercial cesium dispensers, based on the decomposition of

stable cesium compounds instead of the thermal evaporation of a reservoir of

pure cesium, are a possible alternative that may resolve the encountered stability

problems. A prototype system of an oven that contains a 10 mg cesium dispenser

was designed and successfully tested with the surface ionization detector. This

shows the feasibility of this concept and is the �rst step for its application at a

negative-ion source. For the future, long-term stability tests with several 100 mg

of cesium, however, are required to evaluate the advantages of the dispenser oven,

since 1000 - 3000 mg of cesium are consumed by the negative-ion source during

an experimental campaign that can last up to 3 months.

Data of the ad- and desorption kinetics of cesium and the total injection rate of

the IPP evaporation oven at relevant conditions were determined. A computer

model is, however, required to extrapolate these results from the laboratory ex-

periments to the negative-ion source test facilities. No commercial nor scienti�c

code has been available that allows an adequate numerical description of the ce-

sium dynamics within negative-ion sources.

The 3DMonte Carlo based code CsFlow3D was developed and applied to simulate

the transport of neutral and ionic cesium during the vacuum (p = 10�3 - 10�4 Pa)

and the plasma phases (p = 0:3 Pa) of the RF-driven negative-ion source, used at

the MANITU test facility. This long pulse test facility MANITU was chosen for

numerical investigations of the cesium dynamics, since the long-pulse stability at

high source performance is an important requirement for the ITER neutral beam

heating system. Furthermore, the access to the test facility allowed a validation

of the code results by the comparison with experimental observations.

A free molecular �ow regime for cesium is obtained during the vacuum phases.

1NIFS: National Institute for Fusion Science, Nagoya, Japan.
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Collisions with particles of the hydrogen gas and plasma background have to be

considered for the transport during the plasma phases. The required spatially

resolved 3D maps of the particle densities and temperatures were approximated

from experimental investigations at IPP, while the complete 3D magnetic �eld

con�guration of the source was taken from a computer model.

With the CsFlow3D code and the gathered input data, it was possible to perform

a realistic simulation of the cesium dynamics during both, vacuum phases and

long plasma pulses, of the ion source. A validation of the model was done by

a comparison with a Rutherford backscattering measurement of the cesium de-

position on a metal sample that was located in MANITU during an operational

period of one month.

Several important aspects were investigated for the �rst time with CsFlow3D. A

determination of the cesium loss during the vacuum phase through the apertures

system is important in order to evaluate the possible reduction of the voltage

holding capability of the beam formation and acceleration system. The model

showed a low loss rate of 0.25 mg/h for a typical injection of 10 mg/h and source

wall temperatures of 40 - 50 �C. The accumulation of up to several thousand

cesium monolayers on the chamber source walls, especially close to the nozzle

system of the cesium oven, is predicted by the model considering the evaporation

of 1000 mg of cesium. This e¤ect limits the total loss through the apertures,

which is in agreement with experimental observations where large amounts of the

injected cesium are found within the ion source. These predictions can also be

helpful to evaluate the in�uence of design modi�cations of the cesium injection

on the voltage holding capability of the ion source.

The cesium �ux onto the plasma grid was found to be a superposition of the

contributions from both the evaporation oven and re-distribution processes from

the chamber walls. A simulation during the vacuum phase for wall temperatures

of 26 �C and 47 �C predicts a cesium �ux onto the plasma grid of the order of

1012 cm�2 s�1 with an inhomogeneous distribution. The �ux onto the upper half

of the plasma grid is more intense in both cases. This can be explained as an

e¤ect of the position of the cesium oven being located near the top of the source.

An increase of the cesium �ux onto the plasma grid by a factor of two is predicted

by CsFlow3D for the increase of the wall temperature from 26 �C to 47 �C. This

explains the corresponding reduction of the conditioning time of the ion source

that was observed at the IPP negative-ion source test facilities.

Cesium reservoirs are formed during the vacuum phases before the plasma pulses.

The activation of these reservoirs is an important mechanism for the cesium
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transport during the discharge. Transport calculations were used to predict the

distribution of the dominant erosion areas and to simulate the dynamics of the

re-distribution process. The release of cesium at the beginning of the discharge

takes place predominantly on the backplate and on the sidewalls of the ion source

close to the driver. As a consequence of the high electron density and tempera-

ture near these surface areas, the released cesium is essentially instantly ionized

as its mean free path length is below a centimeter. An ion-dominated cesium �ux

on the order of 1013 cm�2 s�1 onto the plasma grid is predicted by the simulation.

The direct �ux onto the plasma grid from the cesium injection from the oven is by

a factor of ten lower than the re-distributed �ux during the plasma phase. This

indicates that the cesium re-distribution from the walls is the dominant process

for the cesium �ux onto the plasma grid. Depending on the available amount of

cesium in the reservoirs, this �ux, however, is depleted within the �rst seconds of

the discharge. Hence, the simulation predicts no conditioning problems when the

source is operated in a series of short discharges with long vacuum phases, like it

is done at the short-pulse test facility BATMAN.

Furthermore, the simulation showed an inhomogeneous �ux pro�le. A more in-

tense cesium �ux was computed onto the upper part of the plasma grid, which is

a direct consequence of the inhomogeneous distribution of cesium reservoirs.

Additional dynamic e¤ects were found for a long pulse duration. A signi�cantly

higher �ux onto the plasma grid on the order 1014 cm�2 s�1 is generated as a

consequence of the heating of the bias plate in MANITU by the thermal load

from the plasma. The bias plate, located at a distance of 1 cm from the plasma

grid, is used to enhance the e¤ect of the bias voltage that is used to reduce the

number of co-extracted electrons. Both the electron density and temperature are

lower near the plasma grid compared to what is found near the driver. Hence,

the cesium release from the bias plate creates a neutral-dominated cesium �ux

onto the plasma grid, which is more intense at the peripheral areas of the grid.

This intensity increase at the edge is a result of the geometry of the bias plate

that forms a frame around the plasma grid area. The time trace of the optical

emission spectroscopy (OES) signal of neutral cesium shows that the predicted

dynamics is in qualitative agreement with experimental observations. Further-

more, a reasonable agreement of the computed density of neutral cesium near the

plasma grid with the density that was approximated with the OES was found.

As a next step, the ratio of ionic and atomic cesium should be investigated and

compared with the results of the simulations. Since it is not possible by the OES

to measure the density of ionic cesium, a new diagnostic method needs to be
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developed.

Numerical investigations of the dynamics and characteristics of the cesium �ux

onto the plasma grid for vacuum phases and plasma pulses of several 100 sec were

done. It was possible to identify the fundamental processes that determine the

pro�le and the dynamics of the cesium �ux onto the plasma grid. The CsFlow3D

simulation improved signi�cantly the basic understanding of the spatial distrib-

ution and dynamics of the cesium �ux for the current con�guration of the ion

source.

Now it is possible to perform a numerical optimization of the cesium transport

with respect to the homogeneity and stability of the cesium �ux onto the plasma

grid. Nevertheless, approximations regarding the release of cesium during the

discharge had to be used for the simulation of the cesium dynamics in MANITU.

In particular, speci�c experimental data are required for the cesium release due to

plasma exposition of the side walls, which is probably a plasma-chemical process.

Future applications of the CsFlow3D code with an improved data set are predic-

tions of the cesium dynamics and homogeneity for the ITER negative-ion source.

This large-scale ion source will have an increased volume-to-surface ratio com-

pared to the IPP prototype source. The extrapolated data can be used for ad-

vanced engineering of the system. Besides the large-scale ion sources, the code

could be applied to simulate the cesium dynamics in small-scale negative-ion

sources that are used in particle accelerators. These comparative studies will

help to improve the understanding of the cesium dynamics and transport, in gen-

eral.

The acquired knowledge of the cesium transport can, however, be applied to de-

sign new ways for an optimized cesium distribution and control within MANITU

and to perform evaluations regarding the results for the existing con�guration.

One possible solution to improve the cesium homogeneity is the use of two ovens.

This concept has not been tested at the IPP test facilities due to technical lim-

itations, but is planned for the future ELISE test facility. A simulation of this

con�guration predicts that the use of two ovens improves the homogeneity. Nev-

ertheless, no improvement of the cesium control is expected since this design

modi�cation helps only to obtain a more symmetric spatial distribution of the

cesium reservoirs on the source walls.

Despite of controlling the temperature of the source walls, the options to in�u-

ence the cesium �ux onto the plasma grid are very limited for the given source

con�guration. The use of an array of cesium dispensers with a controllable cesium

injection rate close to the plasma grid is a possible way to obtain active control
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on the cesium dynamics at the IPP test facilities.

In order to prepare the use of this system at the IPP test facilities, a numerical

optimization of the arrangement and the distance to the plasma grid of this dis-

penser array was done, which also allows an evaluation of the corresponding �ux

properties. A constant and homogeneous cesium �ux onto the plasma grid on the

order of 1013 cm�2 s�1 that is dominated by neutral cesium is predicted by the

code during vacuum and plasma phases for an optimum distance of 8 cm to the

grid and a total injection rate of 10 mg/h.

However, the CsFlow3D code predicts that the use of the dispenser array close

to the plasma grid creates a high cesium leakage through the aperture system

of 1.8 mg/h. This might limit the voltage holding capabilities of the extraction

system. Furthermore, a su¢ ciently high temperature stability of the dispenser

array is required in order to avoid unintended cesium release by the thermal load

from the plasma.

The use of an integrated cesium injection system within the negative-ion source

for ITER is very limited. The replacement of a depleted dispenser system within

the negative-ion source is in con�ict with the remote handling requirements of

ITER. There are, however, no limitations for the use of dispensers as cesium

sources in an external cesium oven where the exchange is similar to the am-

poules. Nevertheless, source-integrated dispensers in combination with a basic

cesium supply by an oven at the ion source backplate might be a solution to

improve the understanding and control of the cesium dynamics within the IPP

test facilities.

A major objective of the modelling e¤orts at IPP is to predict the response of

the negative-ion current density on the dynamics and homogeneity of the cesium

conditions on the plasma grid. Therefore, a coupled simulation environment of

the cesium transport code CsFlow3D and the negative-ion transport code TrajAn

was developed. The simulation was applied to investigate the in�uence of the dy-

namics and homogeneity of the cesium �ux on the negative-ion current density

distribution over the plasma grid for a short and long time discharge character-

istics.

It was found that an unevenly distributed ion production, created for example

by inhomogeneous cesium conditions, can not be compensated by the broadening

due to magnetic �elds and collisions during the transport process of the negative

ions from the production surface to the extraction apertures. The simulation

of the short pulse characteristics showed a top-down asymmetry of the current

density pro�le over the plasma grid, while a current density distribution that is
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peaked at the edge of the plasma grid was found during long pulses.

The coupled simulation environment can now be extended in order to evaluate

the e¤ect of inhomogeneous plasma parameters on the transport and production

of negative ions. This is the �rst step towards a global model for the production

and extraction of negative ions, which is highly desirable for a numerical opti-

mization of the stability and homogeneity of the ion source.

An important issue that has to be resolved in future studies is the relation between

the cesium deposition onto the plasma grid and the negative-ion production - a

process that is also correlated to the co-extracted electron current, according to

observations at the IPP test facilities. Dedicated laboratory experiments of the

negative-ion and electron density for a given cesium �ux and sample temperature

are, therefore, desirable. A modi�cation of the ICP experiment at the University

of Augsburg by a Faraday cup to enable negative-ion extraction is a possible way

to accomplish this objective.
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A. Appendix - Work Function

Figure A.1.: Measurement circuit for the pulsed work function measurement during plasma
operation, which was developed by P. Turba (IPP).
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B. Appendix - Numerical Methods

B.1. Bilinear Interpolation

The numerical algorithms used within the scope of this thesis need input data

of (electric/magnetic) �elds or particle data at arbitrary coordinates. Numerical

codes to compute these �elds or measurements of particle properties generate

input data of these maps on a prede�ned computational grid. Numerical interpo-

lation methods have to be used to compute �eld data, given on a computational

grid, at arbitrary, 3D coordinates. In order to show the principle, an example

of a two-dimensional linear interpolation method is presented, while 3D methods

were implemented in the transport codes. Their application is, however, only a

matter of more bookkeeping.

The data set for the interpolation routine is given by a matrix fi;j corresponding

to a point (xi; yj) of the computational grid. In order to access an arbitrary,

non-tabulated data point at coordinates (x; y), the four next-neighbour points on

the computational grid are determined by the routine:

xi � x � xi+1, (B.1)

yj � y � yj+1.

This procedure is shown by �gure B.1. For a bilinear interpolation, the weighting

factors t and u are determined:

t =
x� xi
xi+1 � xi

, (B.2)

u =
y � yi
yj+1 � yj

.

These factors represent the distances of the interpolation point (x; y) to the points

on the computational grid. In case of a small distance to a speci�c grid point

(xi; yj), the corresponding value of fi;j is more pronounced in the calculation. In

case of a 2D interpolation, the values are proportional to the area by the square to
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Figure B.1.: Schematic drawing of the interpolation process for a given computational grid.

the opposite points of the computational grid and the result of the interpolation

fint(x; y) is then calculated by [WPF96]:

fint(x; y) = (1� t)(1� u) � fi;j + t(1� u) � fi+1;j+ (B.3)

+(1� t)u � fi;j+1 + tu � fi+1;j+1.

Inserting the grid point (xi; yj) into B.3 results in t = u = 0 and the value fi;j is

obtained. The method for 3D bilinear interpolation is very similar and instead

of weighting the area relations, it is necessary to use the volume relations.

B.2. Numerical Solution of Ordinary Di¤erential
Equations

All transport codes within the scope of this work require the solution of ODEs

(ordinary di¤erential equation: ODE) in order to calculate the dynamics of charge
species within electric and magnetic �elds. The force on these particles is given

by the non-relativistic Lorentz equation:

d2~r

dt2
=
q

m

�
~E(~r) +

d~r

dt
� ~B(~r)

�
: (B.4)
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The time-dependent vector of the particle coordinate ~r(t) is called trajectory,

while ~v(t) = d~r
dt
(t) is the current particle velocity at time t. Equation (B.4) re-

quires, however, the speci�cation of initial conditions of the position and starting

velocity at time t0:

~r(t0) = ~x0,
d~r

dt
(t0) = ~v0;

in order to ensure a unique solution.

The numerical solution of a second order ODE requires a transformation of the

ode two a system of �rst order di¤erential equations [WPF96]:

d
dt

 
~v

~r

!
=

 
q
m

�
~E(~r) + ~v � ~B(~r)

�
~v

!
= ~F (~r;~v). (B.5)

For the sake of simplicity, the vector ~y(t) =

 
~v(t)

~r(t)

!
is introduced and it is possible

to transform equation (B.5) by integration:

~y(t) = ~y(t0) +

tZ
t0

~F (~y(~t))d~t. (B.6)

The right hand of the integral equation (B.6) contains numerical data of electric

and magnetic �elds and depends also on ~y(t) itself. Thus an analytical approach is

only possible for special cases. The solution has to be obtained by the application

of numerical methods using discrete time intervals �t to compute a numerical

approximation.

The explicit Euler method is a simple method to solve equation (B.6). In this

case, the approximation of the integral in the time interval [tn; tn+1] is done by:

~yn+1 = ~yn +�t � ~F (~yn) +O(�t2). (B.7)

The variables with index n correspond to ~yn=~y (tn). Equation (B.7) is repeated

until a user-de�ned condition regarding the particle position or time is ful�lled.

The determination of the �eld data ~E(~rn) and ~B(~rn) is done by numerical inter-

polation methods, as shown in section B.1.
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Figure C.1.: Contour plot of the magnetic �ux density at the bias plate and plasma grid of
the negative-ion source test facility MANITU computed with the Permag [Cir06] code.
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Figure C.2.: Contour plot of the magnetic �ux density at the backplate of the negative-ion
source test facility MANITU computed with the Permag [Cir06] code.

The Permag code [Cir06] was used to compute the complete 3D topology of the

magnetic �eld con�guration within the negative ion source. The position of the

permanent magnets for the �lter �eld is shown in �gure 3.9. Figure C.1 and C.2

show contour plots of important magnetic �eld components close to the plasma

grid and the backplate of the RF-driven negative-ion source.
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D. Appendix - Field Particle Data

D.1. Plasma Density

A �eld map of the plasma density nPlasma in the expansion region and the driver

was determined according to probe measurements [MDCK+09][TBM04]. A ho-

mogeneous, axi-symmetric pro�le was assumed to generated 3D �eld maps of

the plasma density within the source. The data were modelled by the following

formula:

nPlasma (~x; r) =
n0(~x)

1 + exp
�
1:49 r�rc (~x)

�(~x)

� [m-3]; (D.1)

where ~x = x[mm]
240

is the distance from the center of the plasma grid and r the

corresponding radius. The variation of nPlasma (~x; r) in the expansion region (~x �
1) is determined by:

n0(~x) = 1:5 � 1018 exp (2 (~x� 1)) , (D.2)

�(~x) = 0:05� 0:02 ~x; (D.3)

rc(~x) = 0:15� 0:03 ~x; (D.4)

while in the driver (~x > 1) a continous transition with constant values of rc(~x) =

0:12, �(~x) = 0:03 and n0(~x) = 1:5 � 1018 [MDCK+09] was used.

D.2. Electron Temperature

The �eld map of the electron temperature Te was determined according to JANUS

probe measurements presented in [Die07]. A homogeneous, axi-symmetric pro�le

was assumed to generated 3D �eld maps of the electron temperature within the

source. The data was modelled by the following formula:

Te (~x; r) =
T0(~x)

1 + exp
�
1:49 r�rc (~x)

�(~x)

� [eV]: (D.5)
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Identical parameters for the radial dependence as in formula D.3 and D.4 were

used for the electron temperature. The axial dependence of T0(~x)

T0(~x) = 20 exp

�
� (�~x+ 1)

0:26

�
. (D.6)

In the driver (~x > 1) a constant electron temperature of Te=20 eV was used.

Axial pro�les of the plasma density nPlasma and the electron temperature Te are

shown in �gure D.1.

D.3. Hydrogen Gas Density and Temperature

A constant background density of nH2=5x10
19 m�3 with a constant gas temper-

ature of TH2=1200 K was used for the transport simulations, according to data

given in [FFF+06][FW06].

D.4. Plasma Potential

The plasma potential map �Plasma was derived from Langmuir-probe measure-

ments [Die07][CKF08][MDCK+09] at di¤erent points within the negative-ion

source test facility BATMAN. The following parabolic dependence of the plasma

potential on the radius r was used in the expansion region:

�Plasma (~x; r) = �0(~x) �
�
1� a (r) r2

�
[V]; (D.7)

a (r) = 0:2
(1� ~x)
l2y

; (D.8)

where is de�ned as ly = Ly=2. The axial depenence of the plasma potential is

given by:

�0(~x) = 40 exp

�
� (~x� 1) ln

�
1

2

��
. (D.9)

A higher plasma potential is obtained within the driver and the following linear

relation was used:

�Plasma (~x; r) = 40 + (~x� 1) 14:28 [V], (D.10)

and a maximum plasma potential of �Plasma = 50 V is reached within the driver.
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Figure D.1.: Axial pro�les of the electron density and temperature used in CsFlow3D.
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E. Constants and Abbreviations

Constant Meaning Value

e elementary charge 1.602x10�19 C

h Planck constant 6.63x10�34 Js

kb Boltzman constant 1.38x10�23 J/K

me electron mass 9.10x10�31 kg

mH proton mass 1.67x10�27 kg

mCs mass of cesium = 133mH

� 3.141593

Abbreviation Meaning

CD current drive

DSMC direct simulation Monte Carlo

ECRH electron cyclotron resonance heating

EG extraction grid

GG grounded grid

ICP inductively coupled plasma

ICRH ion cyclotron resonance heating

IPP Max-Planck Institut für Plasmaphysik

ml cesium monolayer

4.5x1014 cesium atoms per cm�2

NBI neutral beam injection

N-NBI negative neutral beam injection

OES optical emission spectroscopy

PG plasma grid

QMB quartz microbalance

RF-driven radio frequency driven

SID surface ionization detector
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